
______NMCLIB04.DLL: A Windows DLL for NMC Modules______

NMCLIB04.DLL is a Windows DLL that includes functions for communicating with PIC-SERVO (v.4,

v.5, v.10) , PIC-STEP, and PIC-I/O modules. It can be used with almost all Windows programming

languages. This DLL was created using Borland's C++ Builder, and source code is included with the

DLL.

1. Overview

This document describes the functions in NMCLIB04.DLL and compliments the data sheets for the

PIC-SERVO, PIC-STEP and PIC-I/O controller chips. Please refer to those data sheets for additional

detailed descriptions of the parameters referenced by the DLL functions. The DLL library, controller

chip data sheets, and example programs are available from www.jrkerr.com/software.html.

NMCLIB04.DLL is a library of functions for using NMC (Networked Modular Control) compatible

modules. It is an upgrade from NMCLIB0X.DLL, and includes support for PICSERVO (v.4, v.5 and

v.10) motor control modules, PIC-STEP stepper motor control modules, and PIC-IO multi-function I/O

modules.

NMCLIB04.DLL consists of three levels of functions. At the lowest level is the group of serial I/O

functions listed in SIO_UTIL.H. These functions provide basic (non-overlapped) COM port support

independent of the NMC communication protocol. It includes functions for opening and closing COM

ports, sending and receiving characters, etc. Typically, you will never need to call these functions

directly.

The next level of functions, listed in NMCCOM.H, provide basic support of the NMC communication

protocol. The functions at this level are independent of the types of modules used. They include

initialization and reset functions for the entire network of modules, module control functions common

to all module types such as reading or defining status data packets, and functions for retrieving data

common to all module types.

The last level of functions are those specific to particular types of modules. These are described in

PICSERVO.H, PIC-STEP.H and PICIO.H. They include functions for operations specific to each

module type, and functions for retrieving module-type specific data.

In general, there are two types of module specific commands - ones for setting parameters or executing

actions, and ones for retrieving data. Data for a module is located in one of two places: on the host PC,

or in the module itself. Certain data sent to a module, like command velocities, for example, are not

retrievable from the module. When such data are sent, however, the DLL stores the current value

locally on the PC. This data can be retrieved at any time using the appropriate “Get” function such as

ServoGetCmdVel().

••• CAUTION •••

NMCLIB04.DLL is provided without charge for the convenience of developing stand-alone

applications, and no warranty, implied or otherwise, is provided. It is up to the user to verify that any

application using this library meets appropriate safety standards.

J E F F R E Y K E R R , L L C • www.jrkerr.com 1

Data stored within the controller modules, such as position data, must first be read into the host

PC. There are two ways to read in this data: you can use NmcDefineStatus()to have the

data of interest returned to the host with every command sent to a module, or you can use

NmcReadStatus()to read a particular bit of data just once. Once the current value of the data

has been read from the controller, you can again use the appropriate “Get” function, such as

ServoGetPos(), to retrieve the data from the DLL.

In addition to the function descriptions for each header file below, users should look at the

example programs provided, and may even look at the source code provided for the DLL itself.

The source code and make files are for Borland C++ Builder, although they should be portable to

other C compilers.

2. Software Description

Figure 1 shows a typical application using the NMCLIB04.DLL Windows DLL. It consists of a

Windows PC, a SSA-485 Smart Serial Adapter, and several NMC modules (for example, two

PIC-SERVO and one PIC-IO). The PC is running the user application code and the

NMCLIB04.DLL. The user application calls NMCLIB04.DLL functions to to initialize

communications, send commands, and receive status from the NMC modules. The SSA-485 is

jumpered to operate in pass-through mode, and converts the RS232/USB serial data from the PC

to RS485 (4 wire) serial data to the NMC modules.

J E F F R E Y K E R R , L L C • www.jrkerr.com 2

Figure 1 - Typical Application Using NMCLIB04.DLL

SSA-485
Smart
Serial

Adapter

(Pass-Through Mode)

SSA-485

ADDR_OUT ADDR_IN

Module 2

ADDR_OUT ADDR_IN

Module 3

ADDR_OUT ADDR_IN

Module 1

RS485 TX

RS485 RX

RS232 / USB

NMCLIB04
DLL

PC

Application
Code

2.1 Initialization

Before any NMC module commands are sent, the NMCLIB04.DLL must be initialized by

calling NmcInit(). NmcInit() performs the following tasks:

● Open UART

● Reset Modules

● Assign Addresses

● Initialize Structures

Open UART
NMCLIB04.DLL communicates with the SSA-485 Smart Serial Adapter (which communicates to

the NMC modules) through a COM port on the PC. NmcInit() first opens the COM port at

the default baud rate of 19200 using the port number specified in the command line argument,

then starts performing NMC initialization. After the NMC initialization is complete,

NmcInit() changes the baud rate to the rate specified in the command line argument.

After NmcInit() returns, the application may change the communications baud rate rate at

any time by calling NmcChangeBaud().

In order to prevent communications errors due to mismatched baud rates, the baud rate should be

set back to the default rate of 19200 at the end of the application program (for example, if the

rate was changed to 57600). This will ensure that when the application restarts at 19200, it will

be able to talk to the modules. Otherwise, communications with the modules will fail because of

a baud rate mismatch, and the modules will have to be power-cycled to set them back to 19200.

Reset Modules
After the COM port is opened, a Reset command is sent to the universal reset address 0xFF. On

receiving this command, modules will reset themselves to their power-up state. In this state they

will be waiting to be assigned an address.

Because the universal reset address 0xFF is recognized only by new versions of PIC-SERVO and

PIC-STEP modules, care must be taken when working with older versions of PIC-SERVO and

PIC-STEP modules, and any PIC-IO modules. To ensure that these modules can be reset at

initialization, the module's group address must be set to 0xFF using

NmcSetGroupAddress() at the end of the application program (only if the group address

was changed from the default 0xFF). Alternatively, power-cycling the module will restore the

module group address to it's default value of 0xFF.

Assign Addresses
After modules are reset, they are assigned an individual address between 1 and 32 inclusive.

Addresses are assigned sequentially starting with address 1. Modules are also assigned group

address 0xFF. After initialization, the application program cannot change a module's individual

address, but may change a module's group address at any time with the

NmcSetGroupAddress() command.

Individual addresses are assigned to modules based on their network topology, starting with the

J E F F R E Y K E R R , L L C • www.jrkerr.com 3

daisy-chained module that is furthest from the host. For example, in Figure 1, module 1 is

assigned address 1, module 2 is assigned address 2, etc. Note that if the network topology is

changed such that the modules are daisy-chained if a different order, modules will be assigned

different addresses.

Initialize Internal Data Structures
NMCLIB04.DLL internal data structures are set during initialization. For each module detected,

the module type and module version is read and stored, and the default status items is set to 0 (no

additional status items are sent in the status packets in response to a command). The number of

modules detected is stored, and returned by NmcInit().

2.2 Command Addressing

The bulk of the functions in NMCLIB04.DLL are for sending commands to modules.

Commands may be sent to modules using either their individual, group, or universal reset

address.

Individual Address
At power up, or after a reset, all modules have the default address of 0x00. The application

program must run NmcInit() during initialization to assign each module a unique individual

addresses between 1 and 32 inclusive. Once assigned, the application program cannot change the

module's individual address. The modules keep their address until they are reinitialized by

NmcInit() or power-cycled.

PIC-SERVO modules may optionally save their configuration data to EEPROM (including the

module's address) using the ServoHardReset() command. On power-up, the module will

be configured with configuration data read from EEPROM. In general, we recommend the

configuration data should not be saved in EEPROM, and the modules should be completely

configured by the host on start-up. This will reduce addressing conflicts and problems associated

with keeping track of the state of each module. See ServoHardReset() for examples of

special circumstances when configuration data should be saved to EEPROM.

Group Address
Each NMC controller module also has a group address. On power-up or reset, the group address

defaults to 0xFF. Group address are set with the NmcSetGroupAddress() and are restricted

to values between 128 and 255.

The purpose of the group address is to be able to send a single command (such as

NmcSynchOutput()) to a several controllers at the same time. While the individual addresses

of all controllers must be unique, a group of controllers can share a common group address.

When a command packet is sent over the NMC network to a group address, all modules with a

matching group address will execute the command.

The issue of which module will send a status packet in response to a group command is resolved

with the distinction between group members and group leaders. When the group address for a

module is set, the NmcSetGroupAddress() command will also specify if the module is to be

the leader or a member of that group. If a module is a member of it's group and it receives a

group command (i.e., a command sent to it's group address), it will execute the command but not

J E F F R E Y K E R R , L L C • www.jrkerr.com 4

send back a status packet. If a module is the leader of it's group and it receives group command,

it will send back a status packet in addition to executing the command. (The status packet is just

the same as one sent in response to an individually addressed command.)

For any group of modules sharing the same group address, only one module should be declared

the group leader.

In certain instances (as when changing the Baud rate for all modules on the network), it is

necessary to send a command to a group without a group leader. In this case, no status will be

coming back from any controllers, and the host should wait for at least 0.51 milliseconds before

sending another command to keep from overwriting the previous command. If you need to

change the baud rate, it is best, when initially setting the addresses, to leave the group address for

all modules at 0xFF with no group leaders. After changing the baud rate, you can then re-define

the group addresses as needed.

Universal Reset Address
For most applications, group commands are not needed and the group address for all modules is

left at 0xFF. If, however, the modules are split up into several groups with different group

addresses, sending a single Reset command to reset all controllers at once becomes problematic.

To address this issue, newer versions of PIC-SERVO SC and PIC-STEP modules will always

execute a Hard Reset command sent to the address 0xFF, independent of the value of the

module’s group address (note that when a Reset command is sent, no status packet will be

returned). Older versions of PIC-SERVO and PIC-STEP modules, and all PIC-IO modules do not

recognize the universal reset address. To reset these modules, the reset command can be sent to

the module's individual address, it's group address (the default module group address is 0xFF

unless it is changed by NmcSetGroupAddress()), or the module can be power cycled.

2.3Status Packets

Modules send status packets in response to commands. The status packet consists of status data

followed by a single checksum byte. The default status packet contains a single status byte (plus

the checksum byte) with basic information about the state of the module, including whether or

not the previous command had a checksum error. The application program may optionally

program the module to send additional status information using the NmcDefineStatus() and

the NmcReadStatus() commands. Additional status information includes information such

as position values, timeout/counter values, and input A/D values.

The conditions for when a module sends a status packet depends on the command sent and the

command address. Modules never send a status packet is response to library functions

NmcHardReset(), NmcChangeBaud(), and ServoHardReset(). Modules will send

status packets in response to commands sent to their individual address, including when the

module detects a command checksum error. For commands sent to a module's group address, the

module will send a status packet if it is the group leader, otherwise no status packet will be sent.

Returned status information is stored internally by NMCLIB04.DLL. Application programs can

retrieve the status information using a set of functions defined to retrieve individual status fields

from PIC-SERVO, PIC-STEP, and PIC-I/O status packets.

Accessing status data within your program is a two step process. The first step is to retrieve the

J E F F R E Y K E R R , L L C • www.jrkerr.com 5

status data from a module. If the status data of interest (e.g., position data) has been specified

with an NmcReadStatus() command, any command sent to the module will cause that status

data to be returned. You can also use NmcReadStatus() to have some item of status data

sent back just once. The status data sent back is stored internally by NMCLIB04.DLL. To

access the particular data fields stored within the DLL, you should use one of the functions listed

in Section 4.

Note that the status data functions simply retrieve data from the module’s data structure stored

locally within the DLL. To insure that the status data is current, a NmcReadStatus() (with

the appropriate bit in the ‘statusitems’ byte set) command should be issued just prior to calling

the status data function. If NmcDefineStatus() has already been used to permanently

include the relevant data item in the default status packet, any command sent to the module will

update the local data structure.

3. Function Specification

The NMCLIB04.DLL functions are grouped into five categories: Serial I/O Functions, NMC

functions, PIC-SERVO functions, PIC-STEP functions, and PIC-IO functions. The functions are

summarized as follows:

SIO Functions

Function Description

ErrorMsgBox Display a simple message box for low-level error

messages

ErrorPrinting Controls whether low-level error messages are printed

or suppressed

SimpleMsgBox Display a simple message box

SioChangeBaud Changes the baud rate of a COM port

SioClose Closes a COM port

SioClrInbuf Clears all the characters in a COM port's input buffer

SioGetChars Read characters from a COM port

SioOpen Opens a COM port at the specified baud rate.

SioPutChars Puts characters out a COM port

SioTest Returns the number of characters in a COM port's input

buffer

J E F F R E Y K E R R , L L C • www.jrkerr.com 6

NMC Functions

Function Description

FixSioError Attempts to re-sync communications

InitVars Initialize miscellaneous network variables

NmcChangeBaud Changes the network baud rate of the COM port and

modules

NmcDefineStatus Defines what status data is returned after each

command packet sent

NmcGetGroupAddr Returns module's group address

NmcGetModType Returns module's module type

NmcGetModVer Returns module's firmware version

NmcGetStat Returns module's current status byte

NmcGetStatItems Returns the byte specifying which default status items

are returned in a module's status data packet

NmcGroupLeader Returns true is specified module is a group leader

NmcHardReset Resets module to it's power up state

NmcInit Opens the COM port and initializes the NMC network

NmcNoOp No operation – module returns current status

NmcReadStatus Reads the specified status items once

NmcSendCmd Low level routine for sending a command packet

NmcSetGroupAddress Sets a module's group address

NmcShutdown Resets modules then closes COM port

NmcSynchInput Causes a group of modules to synchronously capture

input values

NmcSynchOutput Causes a group of modules to synchronously execute a

previously stored output command

J E F F R E Y K E R R , L L C • www.jrkerr.com 7

PIC-SERVO Functions

Function Description

ServoAddPathpoints Adds a set of path points for path mode operation

ServoClearBits Clears the latched status bits

ServoGetAD Returns the current A/D value

ServoGetAux Returns the current auxiliary status byte

ServoGetCmdAcc Returns the most recently issued command

acceleration

ServoGetCmdPos Returns the most recently issued command position

ServoGetCmdPwm Returns the most recently issued command PWM value

ServoGetCmdVel Returns the most recently issued command velocity

ServoGetGain Returns the most recently issued servo gain values

ServoGetGain2 Returns the most recently issued servo gain values (use

this version for PIC-SERVO SC)

ServoGetHome Returns the current motor home position

ServoGetHomeCtrl Returns the most recently issued home command

control byte

ServoGetIoCtrl Returns the most recently issued I/O command control

byte

ServoGetMoveCtrl Returns the most recently issued move command

control byte

ServoGetNPoints Returns the number of path points remaining

ServoGetPError Returns the servo positioning error

ServoGetPos Returns the current motor position

ServoGetStat Low-level routine to process and store returned PIC-

SERVO status data

ServoGetStopCtrl Returns the most recently issued stop command control

byte

ServoGetStopPos Returns the most recently issued stop position

ServoGetVel Returns the current motor velocity

ServoHardReset Reset the controller to its power-up state and optionally

store configuration data in EEPROM

ServoInitPath Initializes the starting point of a path to the current

motor position

ServoLoadTraj Loads motion trajectory information

ServoNewMod Creates and initializes a new SERVOMOD structure

J E F F R E Y K E R R , L L C • www.jrkerr.com 8

Function Description

ServoResetPos Resets the position counter to zero

ServoResetRelHome Resets the position relative to the home position

register

ServoSetGain Sets the servo gains

ServoSetGain2 Sets the servo gains (use this version for new

applications)

ServoSetHoming Sets homing mode parameters for capturing the home

position

ServoSetIoCtrl Controls the configuration of the LIMIT1 and LIMIT2

I/O pins, as well as other miscellaneous functions

ServoSetPos Set the servo position to a specific value

ServoStartMove Synchronously starts preloaded motions

ServoStartPathMode Starts execution of the path loaded into the internal

path point buffer

ServoStopHere Stop the motor at the specified position

ServoStopMotor Stops the motor in the manner specified by mode

J E F F R E Y K E R R , L L C • www.jrkerr.com 9

PIC-STEP Functions

Function Description

StepGetAD Returns the current A/D value

StepGetCmdAcc Returns the most recently issued command acceleration

StepGetCmdPos Returns the most recently issued command position

StepGetCmdSpeed Returns the most recently issued command speed

StepGetCmdST Returns the most recently command timer count

StepGetCtrlMode Returns the control mode byte (set with StepSetParam)

StepGetHome Returns the current motor home position

StepGetHomeCtrl Returns the homing control byte

StepGetHoldCurrent Returns the holding current (set with StepSetParam)

StepGetInbyte Returns the current input byte

StepGetMinSpeed Returns the minimum stepping speed

StepGetOutputs Returns the most recently command output byte

StepGetPos Returns the current motor position

StepGetRunCurrent Returns the running current (set with StepSetParam)

StepGetStat Low-level routine to process and store returned PIC-

STEP status data

StepGetStepTime Returns the current timer count

StepGetStopCtrl Returns the stopping control byte

StepGetThermLimit Returns the thermal limit (set with StepSetParam)

StepLoadTraj Loads motion trajectory information

StepNewMod Creates and initializes a new STEPMOD structure

StepResetPos Resets position counter to zero

StepSetHoming Set homing mode parameters for capturing the home

position

StepSetOutputs Sets or clears the general purpose output pins

StepSetParam Set the PIC-STEP operating parameters

StepStopMotor Stops a motor in the manner specified by mode

J E F F R E Y K E R R , L L C • www.jrkerr.com 10

PIC-I/O Functions

Function Description

IoBitDirIn Sets the direction of an I/O bit to be an input bit

IoBitDirOut Set the direction of an I/O bit to be an output bit

IoClrOutBit Clears the value of an output bit to 0

IoGetADCVal Returns the A/D value from channel 0, 1, or 2

IoGetBitDir Returns I/O bit direction

IoGetPWMVal Returns the most recently set PWM value for channel 0

or 1

IoGetStat Processes and stores returned PIC_IO status data

IoGetTimerMode Returns the most recently set timer control byte

IoGetTimerSVal Returns the synchronously captured timer value

IoGetTimerVal Returns the timer value

IoInBitSVal Returns the value of a synchronously captured input bit

IoInBitVal Returns the value of an input bit

IoNewMod Creates and initializes a new IOMOD structure

IoOutBitVal Returns the most recently set state of an output bit

IoSetOutBit Set the value of an output bit to 1

IoSetPWMVal Set the PWM output values

IoSetSyncOutput Sets the output bit values and the PWM values to be

set synchronously when the NmcSynchStart() function

is called.

IoSetTimerMode Sets the mode of operation for the timer/counter

J E F F R E Y K E R R , L L C • www.jrkerr.com 11

ErrorMsgBox

Display a simple message box for low-level error messages

Function Prototype
int ErrorMsgBox(char *msgstr);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
Returns 0 if fails, or when error message printing is disabled (see ErrorPrinting()).

Returns non-zero on success. See the Windows OS MessageBox() function description

for success return values.

Arguments
msgstr – Error message string

Pointer to a null-terminated string that contains the message to be displayed.

Description
Displays a simple windows message box for low-level error messages under display

control. ErrorMsgBox() message display is enabled by calling ErrorPrinting(1), and

disabled by calling ErrorPrinting(0).

Example
To display the error message “Low Level Debugging Error”:

ErrorMsgBox(“Low Level Debugging Error”);

J E F F R E Y K E R R , L L C • www.jrkerr.com 12

ErrorPrinting

Controls whether low-level error messages are printed or suppressed

Function Prototype
void ErrorPrinting(int f);

File Name
sio_utils.cpp

Include
sio_utils.h

Return Value
None.

Arguments
f – Enable

Non-zero enables low-level error printing by ErrorMsgBox(), zero disables.

Description
Controls whether the low-level error messages are printed or suppressed by the

ErrorMsgBox() function.

Example
To enable the printing of low-level error messages by ErrorMsgBox():

ErrorPrinting(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 13

FixSioError (Internal Library Function)

Attempts to re-sync communications

Function Prototype
void FixSioError(void);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
None.

Arguments
None.

Description
Attempts to re-sync NMC communications. FixSioError() keeps track of sequential

communication errors. If FixSioError() detects multiple sequential errors, it will display

the message “Multiple communications errors – please reset the Network” and return.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 14

InitVars (Internal Library Function)

Initializes miscellaneous network variables

Function Prototype
void InitVars(void);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
None.

Arguments
None.

Description
Initializes miscellaneous network variables. Called during network initialization.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 15

IoBitDirIn

Sets the direction of an I/O bit to be an input bit

Function Prototype
BOOL IoBitDirIn(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to set. Bit numbers 0-11 correspond to I/O pins 1-12. Bit numbers

12-15 are ignored.

Description
The PIC-IO uses a bit-field to control the direction of the I/O pins. Bit numbers 0-11 of

the bit-field correspond to I/O pins 1-12. IoBitDirIn() sets the direction of I/O bit

“bitnum” to be an input bit. On power-up, all bits are defined as inputs.

Example
To set I/O pin 4 (bit number 3) of module 1 to be an input bit:

IoBitDirIn(1, 3);

J E F F R E Y K E R R , L L C • www.jrkerr.com 16

IoBitDirOut

Sets the direction of an I/O bit to be an output

Function Prototype
BOOD IoBitDirOut(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to set. Bit numbers 0-11 correspond to I/O pins 1-12. Bit numbers

12-15 are ignored.

Description
The PIC-IO uses a bit-field to control the direction of the I/O pins. Bit numbers 0-11 of

the bit-field correspond to I/O pins 1-12. IoBitDirOut() sets the direction of I/O bit

“bitnum” to be an output bit. On power-up, all bits are defined as inputs. Make sure that

any I/O pins defined as outputs are not connected to the output of another device, or else

the PIC-I/O or the other device may be damaged.

Example
To set I/O pin 4 (bit number 3) of module 1 to be an output bit:

IoBitDirOut(1, 3);

J E F F R E Y K E R R , L L C • www.jrkerr.com 17

IoClrOutBit

Clears the value of an output bit to 0

Function Prototype
BOOL IoClrOutBit(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to cleared. Bit numbers 0-11 correspond to I/O pins 1-12. Bit

numbers 12-15 are ignored.

Description
The PIC-IO uses a bit-field to control the direction of the I/O pins. Bit numbers 0-11 of

the bit-field correspond to I/O pins 1-12. IoClrOutBit() clears the value of output bit

“bitnum” to 0. Make sure that any I/O pins defined as outputs are not connected to the

output of another device, or else the PIC-I/O or the other device may be damaged. This

has no effect if the bit is defined as an input.

Example
To clear I/O output pin 4 (bit number 3) of module 1 to zero:

IoClrOutBit(1, 3);

J E F F R E Y K E R R , L L C • www.jrkerr.com 18

IoGetADCVal

Returns the A/D value from channel 0, 1, or 2

Function Prototype
byte IoGetACDVal(byte addr, int channel)*;

File Name
picio.cpp

Include
picio.h

Return Value
 Returns ADC value (0 – 255) of specified channel, or 0 for invalid channel.

Arguments
addr – Module address

Module address (1 – 32)

channel – ADC channel
ADC channel (0, 1, or 2)

Description
Returns the A/D value from channel 0, 1, or 2 (stored locally) from a PIC-IO module.

Note: this data is only valid if the SEND-ADn (n=1,2 or 3) bit has been set in the most

recently issued NmcDefineStatus() command.

Example
To get the channel 2 A/D value from module 1:

adc_val = IoGetADCVal(1, 2);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 19

IoGetBitDir

Returns I/O bit direction

Function Prototype
BOOL IoGetBitDir(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Bit defined as an output

1 = Bit defined as an input

Arguments
addr – Module address

Module address (1 – 32)

bitnumber – Bit number
Bit number to be examined. Bit numbers 0-11 correspond to I/O pins 1-12. Bit

numbers 12-15 are ignored.

Description
Returns 0 if a PIC-IO module I/O bit is defined as an output, 1 if defined as an input.

Example
To read the direction of bit 6 of module 1:

bit_dir = IoGetBitDir(1, 6);

J E F F R E Y K E R R , L L C • www.jrkerr.com 20

IoGetPWMVal

Returns the most recently set PWM value for channel 0 or 1

Function Prototype
byte IoGetPWMVal(byte addr, int channel);

File Name
picio.cpp

Include
picio.h

Return Value
Returns the PWM value (0-255) of the specified channel.

Arguments
addr – Module address

Module address (1 – 32)

channel – Channel
PWM channel (0 or 1)

Description
Returns the most recently set PWM value for channel 0 or 1 of a PIC-IO module.

Example
To get the most recently set channel 0 PWM value of module 1:

pwm_val = IoGetPWMVal(1, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 21

IoGetStat (Internal Library Function)

Processes and stores returned PIC-IO status data

Function Prototype
BOOL IoGetStat(byte addr);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
IoGetStat() processes and stores the status data returned from a PIC-IO module. It takes

the status data stored in the global array “inbuf”, verifies the number of bytes received

and checksums, then stores the status fields in the NMCMOD structure mod[addr].

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 22

IoGetTimerMode

Returns the most recently set timer control byte

Function Prototype
byte IoGetTimerMode(byte addr);

File Name
picio.cpp

Include
picio.h

Return Value
Returns the most recently set timer control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently set timer control byte for a PIC-IO module.

Example
To get the most recently set timer control byte for module 1:

tmr_mode = IoGetTimerMode(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 23

IoGetTimerSVal

Returns the synchronously captured timer value

Function Prototype
unsigned long IoGetTimerSVal(byte addr)*;

File Name
picio.cpp

Include
picio.h

Return Value
Returns the synchronously captured timer value.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the synchronously captured timer value (stored locally) from a PIC-IO module.

Note: this data is only valid if the SEND_SYNC_TMR bit has be set in the most recently

issued NmcDefineStatus() command.

Example
To return the synchronously captured timer value of module 1:

sval = IoGetTimerSVal(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 24

IoGetTimerVal

Returns the timer value

Function Prototype
unsigned long IoGetTimerVal(byte addr)*;

File Name
picio.cpp

Include
picio.h

Return Value
Returns the timer value.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the timer value (stored locally) from a PIC-IO module. Note: this data is only

valid if the SEND_TIMER bit has been set in the most recently issued NmcDefineStatus

() command.

Example
To return the timer value of module 1:

tmr_val = IoGetTimerVal(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 25

IoInBitSVal

Returns the value of the synchronously captured input bit

Function Prototype
BOOL IoInBitSVal(byte addr, int bitnum)*;

File Name
picio.cpp

Include
picio.h

Return Value
Value of the synchronously captured input bit.

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to be examined. Bit numbers 0-11 correspond to I/O pins 1-12. Bit

numbers 12-15 are ignored.

Description
Returns the value of a synchronously captured input bit (stored locally) from a PIC-IO

module. Note: this data is only valid if the SEND_SYNCH_IN bit has been set in the

most recently issued NmcDefineStatus() command.

Example
To return the value of the synchronously capture input bit 2 of module 1:

synch_bit = IoInBitSVal(1, 2);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 26

IoInBitVal

Returns the value of an input bit

Function Prototype
BOOL IoInBitVal(byte addr, int bitnum)*;

File Name
picio.cpp

Include
picio.h

Return Value
Value of the input bit.

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to be examined. Bit numbers 0-11 correspond to I/O pins 1-12. Bit

numbers 12-15 are ignored.

Description
Returns the value of an input bit (stored locally) from a PIC-IO module. Note: this data is

only valid if the SEND_INPUTS bit has been set in the most recently issued

NmcDefineStatus() command.

Example
To return the value of input bit 2 of module 1:

bit_val = IoInBitVal(1, 2);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 27

IoNewMod (Internal Library Function)

Creates and initializes a new IOMOD structure

Function Prototype
IOMOD* IoNewMod(void);

File Name
picio.cpp

Include
picio.h

Return Value
Pointer to the newly created IOMOD structure.

Arguments
None

Description
Creates, initializes, and returns a new IOMOD structure for storing PIC-IO data.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 28

IoOutBitVal

Returns the most recently set state of an output bit

Function Prototype
BOOL IoOutBitVal(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
 Returns the most recently set state (0 or 1) of an output bit.

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to be examined. Bit numbers 0-11 correspond to I/O pins 1-12. Bit

numbers 12-15 are ignored.

Description
Returns the most recently set state of an output bit (bitnum = 1 – 11) of a PIC-IO module.

Example
To get the most recently set state of output bit 4 of module 1:

bit_val = IoOutBitVal(1, 4);

J E F F R E Y K E R R , L L C • www.jrkerr.com 29

IoSetOutBit

Sets the value of an output bit to 1

Function Prototype
BOOL IoSetOutBit(byte addr, int bitnum);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

bitnum – Bit number
Bit number to be set. Bit numbers 0-11 correspond to I/O pins 1-12. Bit numbers

12-15 are ignored.

Description
Sets the value of a PIC-IO module output bit to 1. This has no effect if the bit is defined

as an input.

Example
To set the value of output bit 4 to 1 on module 1:

IoSetOutBit(1, 4);

J E F F R E Y K E R R , L L C • www.jrkerr.com 30

IoSetPWMVal

Set the PWM output values

Function Prototype
BOOL IoSetPWM(byte addr, byte pwm1, byte pwm2);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

pwm1 – Output value on pin PWM1 (0 - 255)
Output value on pin PWM1. A value of 255 corresponds to 100% duty cycle

(always HI) and 0 corresponds to a 0% duty cycle (always LO).

pwm2 – Output value on pin PWM2 (0 – 255)
Output value on pin PWM2. A value of 255 corresponds to 100% duty cycle

(always HI) and 0 corresponds to a 0% duty cycle (always LO).

Description
IoSetPWMVal() immediately sets the two PWM output values for a PIC-IO module. A

value of 0 will turn off the PWM output driver, a value of 255 will turn it on with a 100%

duty cycle.

Example
To have module 1 set PWM1 output to 25.1% duty cycle and PWM2 output to 50.2%

duty cycle:

IoSetPWMVal(1, 64, 128);

J E F F R E Y K E R R , L L C • www.jrkerr.com 31

IoSetSyncOutput

Sets the output bit values and the PWM values to be set synchronously when the
NmcSynchStart() function is called.

Function Prototype
BOOL IoSetSynchOutput(byte addr, int outbits, byte pwm1, byte pwm2);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

outbits – Output bit values
Bits 0-11 of outbits corresponds to I/O pins 1-12. Setting a bit in outbits will

cause the corresponding pin to go HI, clearing a bit will cause the pin to go LOW.

If a pin is defined as an input, the bit value will be ignored.

pwm1 – Output value on pin PWM1 (0 – 255)
Output value on pin PWM1. A value of 255 corresponds to 100% duty cycle

(always HI) and 0 corresponds to a 0% duty cycle (always LOW).

pwm2 – Output value on pin PWM2 (0 – 255)
Output value on pin PWM2. A value of 255 corresponds to 100% duty cycle

(always HI) and 0 corresponds to a 0% duty cycle (always LOW).

Description
IoSetSyncOutput() stores output bit values and PWM values in PIC-I/O internal registers

to be set synchronously when the NmcSynchOutput() function is called.

Example
To synchronously set module 1 output pins 2, 7, and 12 to HI and the remaining output

pins to LOW, and set PWM1 output to 25.1% duty cycle and PWM2 output to 50.2%

duty cycle (outputs are set when NmcSynchOutput() is called):

IoSetSynchOutput(1, 0x842, 64, 128);

J E F F R E Y K E R R , L L C • www.jrkerr.com 32

IoSetTimerMode

Sets the mode of operation for the timer/counter

Function Prototype
BOOL IoSetTimerMode(byte addr, byte tmrmode);

File Name
picio.cpp

Include
picio.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

tmrmode – Timer Mode
---- Logical OR of the following Timer Mode bits ----

OFFMODE - disable counter/timer
COUNTERMODE - select and enable counter mode
TIMERMODE - select and enable timer mode
RESx1 - no prescaler (count every event)
RESx2 - 2:1 prescaler (every other event counted)
RESx4 - 4:1 prescaler (every 4th event counted)
RESx8 - 8:1 prescaler (every 8th event counted)

Description
IoSetTimerMode() sets the operating mode for the PIC-IO counter/timer. If in counter

mode, each rising edge of I/O bit 10 (JP10, pin 5) will be counted. This bit should be set

as an input to count external events. In timer mode, the counter counts the PIC-I/O's 5.0

Mhz internal clock. The prescalar applies to both the counter and the timer modes. A

call to this function will both set the mode and clear the counter/timer value to zero.

Example
To enable the module 1 timer/counter to counter mode with 2:1 prescaling:

IoSetTimerMode(1, COUNTERMODE|RESx2);

J E F F R E Y K E R R , L L C • www.jrkerr.com 33

NmcChangeBaud

Changes the network baud rate of the COM port and modules

Function Prototype
BOOL NmcChangeBaud(byte groupaddr, unsigned int baudrate);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
groupaddr – Group address

Group address (0x80 – 0xFF)

baudrate – Baud rate
19200, 57600, 115200, or 230400 (valid for PIC-SERVO SC only)

Description
Sends a group command to all modules on the network to change their baud rate, and also

changes the COM port's baud rate. 'groupaddr' should be 0xFF, unless the group address

for all modules has been changed. All modules must have the same group address (with

no group leader, so that no status packet is returned) before calling this function.

NOTE: If an application program uses NmcChangeBaud() to change the baud rate to

other than the default of 19200 (or sets a different baud rate with NmcInit()), it is

recommended that the baud rate be changed back to 19200 before the application exits. If

the application resets the controllers using NmcHardReset() or NmcShutdown(), then this

is not necessary. But it the application is designed to leave the controllers active upon

exit, then the baud rate should be reset to 19200.

Example
To change the network baud rate to 57600 using the default group address 0xFF:

NmcChangeBaud(0xFF, 57600);

J E F F R E Y K E R R , L L C • www.jrkerr.com 34

NmcDefineStatus

Defines what status data is returned after each command packet sent

Function Prototype
BOOL NmcDefineStat(byte addr, byte statusitems);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

statusitems – Status Items to be returned (use the logical OR of the predefined

 bits below)

For PIC-I/O modules, use the following defined bits:

SEND_INPUTS
Send input bit values (2 bytes – the first byte will contain the input values

for I/O bits 1-8, the second byte will contain the input values for I/O bits 9-

12 in the lower nibble)

SEND_AD1
Send A/D 1 value (1 byte)

SEND_AD2
Send A/D 2 value (1 byte)

SEND_AD3
Send A/D 3 value (1 byte)

SEND_TIMER
Send counter/timer value (4 bytes, least significant first)

SEND_ID
Send the device type and version number (2 bytes)

SEND_SYNCH_IN
Send input bit values captured with NmcSynchInput() (2 bytes)

SEND_SYNCH_TMR
Send counter/timer value captured with NmcSynchInput() (4 bytes)

For PIC-SERVO modules, use the following defined bits:

SEND_POS
Send position data (4 bytes - signed 32 bit integer)

SEND_AD
Send A/D value of voltage on CUR_SENSE pin (1 byte, 0 - 255)

SEND_VEL

J E F F R E Y K E R R , L L C • www.jrkerr.com 35

Send actual velocity in encoder counts per servo cycle - the actual velocity

has no integer component (2 bytes - signed 16 bit integer)

SEND_AUX
Send auxiliary status byte (1 byte – see Section 4 for bit field description)

SEND_HOME
Send home position (4 bytes - signed 32 bit integer)

SEND_ID
Send the device type and version number (2 bytes)

SEND_PERROR
Send servo position error (2 bytes)

SEND_NPOINTS
Send number of path points left in path buffer (1 byte)

For PIC-STEP modules, use the following defined bits:

SEND_POS
Send position (4 bytes)

SEND_AD
Send A/D value (1 byte)

SEND_ST
Send current initial timer count (2 bytes)

SEND_INBYTE
Send inputs byte (1 byte – see Section 4 for bit field description)

SEND_HOME
Send home position (4 bytes)

SEND_ID
Send the device type and version number (2 bytes)

Description
NmcDefineStat() defines what status data will be included in the status packet returned

after a command packet is sent. The status data is selected by setting the “statusitems”

argument to the logical OR of the desired status items. The selected status items will then

be included in the status packet, along with the status byte which is always sent. The field

size and format of each type of status data returned is listed above. Bit field descriptions

for the PIC-SERVO status byte and auxiliary status byte, the PIC-STEP status byte and

inputs byte, and the PIC-I/O status byte are described in Section 4.

For efficient communications, you should just select the data which you will always need

access to. For data that only needs to be read periodically, use the NmcReadStatus()

function instead. You can use the NmcDefineStatus() command at any time to change

what status data is returned.

Note that this function is used for PIC-I/O, PIC-SERVO, and PIC-STEP modules, and that

the “statusitems” argument defines must match the type of module that is being

addressed.

Example
To have PIC-SERVO module 1 send back position data and position error data with each

status packet:

NmcDefineStatus(1, SEND_POS|SEND_PERROR);

J E F F R E Y K E R R , L L C • www.jrkerr.com 36

NmcGetGroupAddr

Returns module's group address

Function Prototype
byte NmcGetGroupAddr(byte addr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
 Returns the modules group address (0x80 – 0xFF)

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the group address of the specified module.

Example
To get the group address of module 1:

group_addr = NmcGetGroupAddr(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 37

NmcGetModType

Returns the module's module type

Function Prototype
byte NmcGetModType(byte addr)*;

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = PIC-SERVO module

2 = PIC-IO module

3 = PIC-STEP module

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the module type of the specified module.

Example
To get the module type of module 1:

mod_type = NmcGetModType(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 38

NmcGetModVer

Returns the module's firmware version

Function Prototype
byte NmcGetModVer(byte addr)*;

File Name
nmccom.cpp

Include
nmccom.h

Return Value
Returns the firmware version of the specified module. The firmware version is simply

the integer value of the returned byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the firmware version of the specified module.

Example
To get the firmware version of module 1:

mod_ver = NmcGetModVer(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 39

NmcGetStat

Returns the module's current status byte

Function Prototype
byte NmcGetStat(byte addr)*;

File Name
nmccom.cpp

Include
nmccom.h

Return Value
Returns the current status byte (stored locally) of a controller.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current status byte (stored locally) of a controller. Any command to a

controller will update the locally stored value of the status byte. See Section 4 for bit

field descriptions of the PIC-SERVO, PIC-STEP, and PIC-I/O status byte.

Example
To get the status byte of module 1:

stat_byte = NmcGetStat(1);

*This function simply retrieves data from the module’s data structure stored locally on the PC. To insure that the

data is current, any command may be sent to the module just prior to calling this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 40

NmcGetStatItems

Returns the byte specifying which default status items are returned in a module's
status data packet

Function Prototype
byte NmcGetStatItems(byte addr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
Returns the byte specifying the default status items to be returned in the status data

packet.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the byte specifying the default status items to be returned in the status data

packet. The bit field format of the returned byte specifying the default status items is the

same as the “statitems” parameter of the NmcDefineStatus() function.

Example
To get the byte specifying the default status items for module 1 :

stat_items = NmcGetStatItems(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 41

NmcGroupLeader

Returns true if the specified module is a group leader

Function Prototype
BOOL NmcGroupLeader(byte addr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Module not a group leader

1 = Module is a group leader

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns true if the specified module is a group leader, otherwise false.

Example
To determine if module is a group leader:

is_leader = NmcGroupLeader(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 42

NmcHardReset

Reset a module to it's power up state

Function Prototype
BOOL NmcHardReset(byte addr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

Description
NmcReset() resets a controller to it's power up state. No status will be returned. The

module's NMC address will be cleared. Typically, this command is issued to all the

modules on the network using the default group address of 0xFF. (For special reset

features of the PIC-SERVO SC modules, please see ServoHardReset().)

NOTE: Newer versions of PIC-SERVO and PIC-STEP modules have a universal reset

address of 0xFF. For these types of modules, a reset command sent to 0xFF will always

reset the modules, even if the their group address has been set to a different value.

Example
To reset all controllers on the network:

NmcHardReset(0xFF);

J E F F R E Y K E R R , L L C • www.jrkerr.com 43

NmcInit

Opens the COM port and initializes the NMC network

Function Prototype
int NmcInit(char *portname, unsigned int baudrate);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
 Returns the number of controllers found on the network.

Arguments
portname – Port name

Name of COM port (“COMn:”, where n = 1 – 8)

baudrate – Baud rate
19200, 57600, 115200, or 230400 (valid for PIC-SERVO SC only)

Description
Opens the COM port specified by ‘portname’ at the specified baud rate, and initializes the

network of motor controllers. Controller addresses are dynamically assigned, starting with

the furthest controller with address 1. All group addresses are set to 0xFF. Returns the

number of controllers found on in the network.

Example
To initialize NMC communications using COM port 1 at 115200 baud:

NmcInit(COM1, 115200);

J E F F R E Y K E R R , L L C • www.jrkerr.com 44

NmcNoOp

No operation – module returns current status

Function Prototype
BOOL NmcNoOp(byte addr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
 0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
NmcNoOp() is used to force a module to send back it's current status data packet without

taking any other action. For example, in a PIC-SERVO module, it is useful for polling the

MOVE_DONE flag in the status byte to determine when a motion has finished.

Example
To force module 1 to return it's current status data:

NmcNoOp(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 45

NmcReadStatus

Reads the specified status items once

Function Prototype
BOOL NmcReadStatus(byte addr, byte statusitems);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

statusitems – Status Items to be returned (use the logical OR of the predefined

 bits below)

For PIC-I/O modules, use the following defined bits:

SEND_INPUTS
Send input bit values (2 bytes – the first byte will contain the input values

for I/O bits 1-8, the second byte will contain the input values for I/O bits 9-

12 in the lower nibble)

SEND_AD1
Send A/D 1 value (1 byte)

SEND_AD2
Send A/D 2 value (1 byte)

SEND_AD3
Send A/D 3 value (1 byte)

SEND_TIMER
Send counter/timer value (4 bytes, least significant first)

SEND_ID
Send the device type and version number (2 bytes)

SEND_SYNCH_IN
Send input bit values captured with NmcSynchInput() (2 bytes)

SEND_SYNCH_TMR
Send counter/timer value captured with NmcSynchInput() (4 bytes)

For PIC-SERVO modules, use the following defined bits:

SEND_POS
Send position data (4 bytes - signed 32 bit integer)

SEND_AD
Send A/D value of voltage on CUR_SENSE pin (1 byte, 0 - 255)

SEND_VEL

J E F F R E Y K E R R , L L C • www.jrkerr.com 46

Send actual velocity in encoder counts per servo cycle - the actual velocity

has no integer component (2 bytes - signed 16 bit integer)

SEND_AUX
Send auxiliary status byte (1 byte – see Section 4 for bit field description)

SEND_HOME
Send home position (4 bytes - signed 32 bit integer)

SEND_ID
Send the device type and version number (2 bytes)

SEND_PERROR
Send servo position error (2 bytes)

SEND_NPOINTS
Send number of path points left in path buffer (1 byte)

For PIC-STEP modules, use the following defined bits:

SEND_POS
Send position (4 bytes)

SEND_AD
Send A/D value (1 byte)

SEND_ST
Send current initial timer count (2 bytes)

SEND_INBYTE
Send inputs byte (1 byte – see Section 4 for bit field description)

SEND_HOME
Send home position (4 bytes)

SEND_ID
Send the device type and version number (2 bytes)

Description
NmcReadStatus() is used to read specific status data from a module just one time; that is,

the status packet returned in response to NmcReadStatus() will include the data specified

in the “statusitems” argument, but the status packet returned with any subsequent

commands will include the status data specified with the most recent NmcDefineStatus()

call. For example, the NmcReadStatus() function is useful for retrieving a module's

home position which needs to be read infrequently.

The status data is selected by setting the “statusitems” argument with the logical OR of

the desired status items. The selected status items will be included in the status packet

along with the status byte which is always sent. The field size and format of each type of

status data returned is listed above. Bit field descriptions for the PIC-SERVO status byte

and auxiliary status byte, the PIC-STEP status byte and inputs byte, and the PIC-I/O status

byte are described in Section 4.

Note that this function is is used for PIC-I/O, PIC-SERVO, and PIC-STEP modules, and that

the “statusitems” argument defines must match the type of module that is being

addressed.

Example
To have PIC-STEP module 1 send back it's home position and A/D value:

NmcReadStatus(1, SEND_AD|SEND_HOMEPOS);

J E F F R E Y K E R R , L L C • www.jrkerr.com 47

NmcSendCmd (Internal Library Function)

Low level routine for sending a command packet

Function Prototype
byte NmcSendCmd(byte addr, byte cmd, char *datastr, byte n, byte stataddr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

cmd – Command type
-- commands for all modules --

SET_ADDR - set module address and group address
DEF_STAT - define status to be returned
READ_STAT - read specified status once
SET_BAUD - set baud rate
NOP - no operation but return defined status
HARD_RESET – reset module to its power up state

-- PIC-IO commands --

SET_IO_DIR – set I/O bit directions
SET_PWM – set PWM output values
SYNCH_OUT – output previously stored PWM and output bytes
SET_OUTPUT – set output bit values
SET_SYNCH_OUT – store output bit and PWM values for later output
SET_TMR_MODE – set timer/counter mode
SYNCH_INPUT – store the input bytes and timer value

-- PIC-Servo commands --

RESET_POS – reset position counter to 0
LOAD_TRAJ – load motion trajectory parameters
START_MOVE – start pre-loaded motion trajectory
SET_GAIN – set PID servo filter operating parameters
STOP_MOTOR – stop motor in one of four modes
IO_CTRL – set various I/O control options
SET_HOMING – set homing mode parameters
CLEAR_BITS – clear the latched status bits
SAVE_AS_HOME – saves current position in the home position register
ADD_PATHPOINT – add path points for path mode

-- PIC-Step commands --

RESET_POS – reset position counter to 0
LOAD_TRAJ – set motion parameters

J E F F R E Y K E R R , L L C • www.jrkerr.com 48

START_MOVE – start pre-loaded trajectory
SET_PARAM – set control parameters
STOP_MOTOR – stop motor and enable/disable amplifier
SET_OUTPUTS – clear or set output pins
SET_HOMING – set homing parameters
SAVE_AS_HOME – saves current position in the home position register

datastr – Additional data
String containing additional command data

n – Number additional bytes
Number of additional bytes required for the additional command data

stataddr – Status data address
If command is sent to a group address, this is the individual address of the group

leader (use 0 if no group leader). Otherwise, use the same value for

addr and stataddr.

Description
NmcSendCmd() is a low-level function for formatting and sending a command packet. It

formats a NMC command packet from the argument data, then sends the command

packet to the NMC network. If the status data address is set to a value other than 0,

NmcSendCmd() will wait for and store the status packet returned by the module.

The module address argument (addr) should contain the address where the command

packet should be sent. For example, it could contain the module address, the module

group address, or the universal reset address 0xFF if a reset command is to be sent to all

modules. The command type (cmd) contains one of the values listed above – note that

some commands are shared by all module types, such as SETBAUD, while other

commands are specific to a particular module type. The number of additional bytes (n)

contains the number of additional data bytes that are to sent with the command.

Additional data (datastr) contains the additional data bytes that store the command

parameters – this is command data such as the baud rate for the SETBAUD command.

Status data address (stataddr) contains the individual address where the defined status

packet should be stored after the command is executed. If a command is sent to a group

address with no group leader, stataddr should be set to 0.

For a complete description of the PIC-IO, PIC-SERVO, and PIC-STEP command set and

usage, see the corresponding chip data sheets.

NOTE: For normal operation, users do not need this command. Use one of the high

level command functions from the NMCLIB04.DLL library.

Example
To have PIC-SERVO module 1 send back position data and position error data with each

status packet, send the following DEFINESTAT command with additional data “datastr”:

char datastr = SERVO_SEND_POS|SERVO_SEND_POSERROR;

NmcSendCmd(1, DEFSTAT, &datastr, 1, 1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 49

NmcSetGroupAddress

Sets a module's group address

Function Prototype
BOOL NmcSetGroupAddress(byte addr, byte groupaddr, BOOL leader);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

groupaddr – Group address
Module's group address (0x80 – 0xFF)

leader – Group leader
Module's group leader status (1 = group leader, 0 = group member)

Description
NmcSetGroupAddress() is used to change the group address of a module from the default

of 0xFF, and to set the module as either a group member or a group leader. Group

addresses for modules are restricted to the range of 0x80 to 0xFF. Normally set just once

during initialization, the group address can be reset to different values at any time. For

any group address, there can be any number of members, but only one group leader. Note

that you should set all group address back to the default of 0xFF (no group leaders) before

the application terminates.

Example
To set module 1 to have a group address of 0x80 and to be the group leader, and set

module 2 to have the same group address, but not be the group leader:

NmcSetGroupAddress(1, 0x80, 1);

NmcSetGroupAddress(2, 0x80, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 50

NmcShutdown

Resets modules then closes COM port

Function Prototype
void NmcShutdown(void);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
None

Arguments
None

Description
NmcShutdown() resets controllers assuming a default group address of 0xFF, then closes

the COM port in use.

Example
To reset all modules with group address 0xFF and to close the currently used COM port:

NmcShutdown();

J E F F R E Y K E R R , L L C • www.jrkerr.com 51

NmcSyncInput

Causes a group of modules to synchronously capture input values

Function Prototype
BOOL NmcSynchInput(byte groupaddr, byte leaderaddr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
groupaddr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

leaderaddr – Group leader address
If groupaddr is individual use: leaderaddr = addr

If groupaddr is group use: leaderaddr = group leader’s individual address

(If no group leader use: leaderaddr = 0)

Description

NmcSyncInput() is used to synchronously save module data. The command is common

to all NMC compatible modules, but the exact data saved is different for each type of

module.

For PIC-SERVO and PIC-STEP modules, NmcSyncInput() is used to synchronously save

the current position of the motor in the home position register. When issued to a group of

modules, NmcSyncInput() will cause them to store their current positions in their

corresponding home position registers. The home position register data can then be

retrieved individually using the NmcReadStatus() function for each module. This allows

the host to take a snapshot of the configuration of a multi-axis system.

For PIC-IO modules, NmcSyncInput() causes the current input bit values and the

counter/timer value to be synchronously stored in the PIC-I/O's internal registers. These

values can be retrieved using the NmcReadStatus() function.

This command may be sent to either an individual module or to a group of modules by

setting module address argument (groupaddr) to the appropriate individual or group

address. The group leader address argument (leaderaddr) should contain the address of

the module that will send the status packet response. If this command is sent to a group

address, then the group leader address argument should be set to the group leader, or to 0

if there is no group leader. If this command is sent to an individual address, then the

group leader address argument should be set to the individual address.

J E F F R E Y K E R R , L L C • www.jrkerr.com 52

Note that by using the group address this command can be used to simultaneously save

module data on modules of different types. For example, when issuing this command to

a group containing PIC-STEP, PIC-SERVO and PIC-IO modules, PIC-IO input bit and

time/counter values can be stored synchronously with PIC-STEP and PIC-SERVO motor

position values.

Example
To synchronously save the current position in the home position registers of the PIC-

SERVO modules with group address 0x80 and group leader address 0x01:

NmcSyncInput(0x80, 0x01);

J E F F R E Y K E R R , L L C • www.jrkerr.com 53

NmcSyncOutput

Causes a group of modules to synchronously execute a previously stored output
command

Function Prototype
BOOL NmcSynchOutput(byte groupaddr, byte leaderaddr);

File Name
nmccom.cpp

Include
nmccom.h

Return Value
0 = Fail

1 = Success

Arguments
groupaddr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

leaderaddr – Group leader address
If groupaddr is individual use: leaderaddr = groupaddr

If groupaddr is group use: leaderaddr = group leader address

(If no group leader use: leaderaddr = 0)

Description
The NmcSyncOutput() function is used to synchronously execute a command using

preloaded command data. The command is common to all NMC compatible modules,

but the exact command executed is different for each type of module.

For PIC-SERVO and PIC-STEP modules, the NmcSyncOutput() function starts a motion.

It is intended to be sent to a group of modules which have been preloaded (using the

ServoLoadTraj() or StepLoadTraj() commands) with motion profile data. When sent to

the group address for these controllers, it will cause all controllers to start their motions

simultaneously. Note that the data loaded into each controller with the Load Trajectory

command merely sits unused in a buffer until the NmcSyncOutput() command is

received. If another Load Trajectory command is received before the NmcSyncOutput()

command, it will overwrite all of the previous trajectory data.

For PIC-I/O modules, the NmcSyncOutput() function synchronously sets the output bit

values and PWM values previously stored with the SetSynchOutput() command.

This command may be sent to either an individual module or a group of modules by

setting module address argument (addr) to the appropriate individual or group address.

The group leader address argument (leaderaddr) should contain the individual address of

the group leader. If there is no group leader, leaderaddr should be set to 0. If this

command is sent to an individual address, then the group leader address argument should

be set to the individual address.

J E F F R E Y K E R R , L L C • www.jrkerr.com 54

Note that by using the group address this command can be used to synchronize modules

of different types. For example, when issuing this command to a group containing PIC-

STEP, PIC-SERVO and PIC-I/O modules, PIC-I/O output bit and PWM values can be set

synchronously with starting PIC-STEP and PIC-SERVO motions.

Example
To synchronously start the preloaded motions on the PIC-SERVO modules with group

address 0x80 and group leader address 0x01:

NmcSyncOutput(0x80, 0x01);

J E F F R E Y K E R R , L L C • www.jrkerr.com 55

ServoAddPathPoints

Adds a set of path points for path mode operation

Function Prototype
BOOL ServoAddPathpoints(byte addr, int npoints, long *path, int freq);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

npoints – Number of points
Number of points in the list (1 – 7).

path – Path points list
Path points list formatted as absolute position data.

freq – Path point frequency
P_30HZ, P_60HZ, or P_120HZ

Description
Adds between 1 and 7 path points to the PIC-SERVO’s internal path point buffer. ‘npoints’

is the number of points to be added, and the absolute path point positions should be

loaded into the array ‘path’. The variable ‘freq’ should be set to one of the constant values

P_30HZ, P_60HZ or P_120HZ. This function will convert the absolute path data into

incremental path data (as required by the PIC-SERVO chip) and perform the proper bit

formatting prior to downloading.

When starting a new path mode motion, ServoInitPath() must be called first to initialize

the starting point of the path to the current motor position before adding any points with

ServoAddPathPoints(). After path points have been added with ServoAddPathPoints(),

motion along the stored path is started by calling ServoStartPathMode(). Once path mode

operation is started, calls to ServoLoadTraj() are not permitted until the path has

completed or the motor is stopped with a ServoStopMotor() command.

The path points added to the path point buffer should be closely spaced and form a

smooth path for the motor to follow. Note that you can get the exact initial command

position of the motor by reading the motor position and the position error with the same

NmcReadStatus() command and then adding them together. You will then specify your

path points starting from there.

The number of path points currently residing in the buffer can be read using the

J E F F R E Y K E R R , L L C • www.jrkerr.com 56

NmcReadStatus() command. The buffer on the PIC-SERVO SC* can hold a maximum of

128 path points. After the path mode motion has started and as the path point buffer is

depleted, you can dynamically add additional path points to the buffers as they empty

(using ServoAddPathPoints()) to create motions of any length.

Note: When using PIC-SERVO CMC (version 5), the advanced features bit of the

ServoStopMotor() command must first be enabled before using this function.

Example
For module address 1 which is currently at position -200, add four path points -100, 0,

100, 200 at 60 Hz:
long plist[8] = { -100, 0, 100, 200 };

ServoAddPathPoints(1, 4, plist, P_60HZ);

*The PIC-SERVO CMC path point buffer can only hold 96 points. Therefore, you will want to limit the number of
points you add to 96 if using a mix of PIC-SERVO SC and PIC-SERVO CMC controllers.

J E F F R E Y K E R R , L L C • www.jrkerr.com 57

ServoClearBits

Clears the latched status bits

Function Prototype
BOOL ServoClearBits(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
The OVERCURRENT and POS_ERROR bits in the status byte and the POS_WRAP and

SERVO_OVERRUN in the auxiliary status byte are latched flags which remain set until

explicitly cleared with the ServoClearBits() command. All of these latched bits are

cleared with a single command.

Example
To clear the latched status bits on module 1:

ServoClearBits(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 58

ServoGetAD

Returns the current A/D value

Function Prototype
byte ServoGetAD(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current A/D value.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current A/D value (stored locally) of a PIC-SERVO module. Use

NmcReadStatus() or NmcDefineStatus() to update the locally stored data.

Example
To get the A/D value from module 1:

ad_val = ServoGetAD(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 59

ServoGetAux

Returns the current auxiliary status byte

Function Prototype
byte ServoGetAux(byte addr)**;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current auxiliary status byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current auxiliary status byte (stored locally) of a PIC-SERVO module. Use

NmcReadStatus() or NmcDefineStatus() to update the locally stored data.

Example
To get the auxiliary status byte from module 1:

aux_stat = ServoGetAux(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 60

ServoGetCmdAcc

Returns the most recently issued command acceleration

Function Prototype
long ServoGetCmdAcc(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued command acceleration.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command acceleration for a PIC-SERVO module.

Example
To get the most recently issued command acceleration from module 1:

cmd_accel = ServoGetCmdAcc(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 61

ServoGetCmdPos

Returns the most recently issued command position

Function Prototype
long ServoGetCmdPos(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued command position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command position for a PIC-SERVO module.

Example
To get the most recently issued command position from module 1:

cmd_pos = ServoGetCmdPos(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 62

ServoGetCmdPwm

Returns the most recently issued command PWM value

Function Prototype
byte ServoGetCmdPwm(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued command PWM.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command PWM value for a PIC-SERVO module.

Example
To get the most recently issued command PWM from module 1:

cmd_pwm = ServoGetCmdPwm(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 63

ServoGetCmdVel

Returns the most recently issued command velocity

Function Prototype
long ServoGetCmdVel(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued command velocity.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command velocity for a PIC-SERVO module.

Example
To get the most recently issued command velocity from module 1:

cmd_vel = ServoGetCmdVel(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 64

ServoGetGain

Returns the most recently issued servo gain values

Function Prototype
void ServoGetGain(byte addr, short int *kp, short int *kd, short int * ki,

short int * il, byte *ol, byte *cl, short int * el, byte * sr, byte *dc);

File Name
picservo.cpp

Include
picservo.h

Return Value
None

Arguments
addr – Module address

Module address (1 – 32)

kp - Position gain Kp
kd - Derivative gain Kd
ki - Integral gain Ki
il - Integration limit IL
ol - Output limit OL
cl - Current limit CL
el - Position error limit EL
sr - Servo rate divisor SR
dc - Amplifier deadband compensation DB

Description
Returns the most recently issued servo gain values for a PIC-SERVO module. Use

ServoGetGain2() for PIC-SERVO SC servo modules.

Example
To get the most recently issued servo gain values for module 1:

short int kp, kd, ki, il, el;

byte ol, cl, sr, dc;

ServoGetGain(1,&kp,&kd,&ki,&il,&ol,&cl,&el,&sr,&dc);

J E F F R E Y K E R R , L L C • www.jrkerr.com 65

ServoGetGain2

Returns the most recently issued servo gain values (for use with PIC-SERVO SC)

Function Prototype
void ServoGetGain2(byte addr, short int *kp, short int *kd, short int * ki,

short int * il, byte *ol, byte *cl, short int * el, byte * sr, byte *dc, byte *sm);

File Name
picservo.cpp

Include
picservo.h

Return Value
None

Arguments
addr – Module address

Module address (1 – 32)

kp - Position gain Kp
kd - Derivative gain Kd
ki - Integral gain Ki
il - Integration limit IL
ol - Output limit OL
cl - Current limit CL
el - Position error limit EL
sr - Servo rate divisor SR
dc - Amplifier deadband compensation DB
sm - Step rate multiplier SM

Description
Returns the most recently issued servo gain values for a PIC-SERVO SC module. For

non-PIC-SERVO SC modules, use ServoGetGain().

Example
To get the most recently issued servo gain values for PIC-SERVO SC module 1:

short int kp, kd, ki, il, el;

byte ol, cl, sr, dc, sm;

ServoGetGain2(1, &kp, &kd, &ki, &il, &ol,

&cl, &el, &sr, &dc, &sm);

J E F F R E Y K E R R , L L C • www.jrkerr.com 66

ServoGetHome

Returns the current motor home position

Function Prototype
long ServoGetHome(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current motor home position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current motor home position (stored locally) of a PIC-SERVO module. Use

NmcReadStatus() or NmcDefineStatus() to update the locally stored data.

Example
To get the current home position from module 1:

home_pos = ServoGetHome(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 67

ServoGetHomeCtrl

Returns the most recently issued home command control byte

Function Prototype
byte ServoGetHomeCtrl(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued home command control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued home command control byte for a PIC-SERVO module.

Example
To get the most recently issued home command control byte for module 1:

home_ctrl = ServoGetHomeCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 68

ServoGetIoCtrl

Returns the most recently issued I/O command control byte

Function Prototype
 byte ServoGetIoCtrl(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued I/O command control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued I/O command control byte for a PIC-SERVO module.

Example
To get the most recently issued I/O command control byte for module 1:

io_ctrl = ServoGetIoCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 69

ServoGetMoveCtrl

Returns the most recently issued move command control byte

Function Prototype
byte ServoGetMoveCtrl(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued move command control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued move command control byte for a PIC-SERVO module.

Example
To get the most recently issued move command control byte for module 1:

move_ctrl = ServoGetMoveCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 70

ServoGetNPoints

Returns the number of path points remaining

Function Prototype
byte ServoGetNPoints(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current number of path points remaining.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the number of path points (stored locally) remaining in the PIC-SERVO (CMC or

SC) path-point buffer. Use NmcReadStatus() or NmcDefineStatus() to update

the locally stored data.

Example
To get the current number of path points left from module 1:

npoints = ServoGetNPoints(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 71

ServoGetPError

Returns the servo positioning error

Function Prototype
short int ServoGetPError(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the servo positioning error.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the servo positioning error (stored locally) of a PIC-SERVO (CMC or SC) module.

Use NmcReadStatus() or NmcDefineStatus() to update the locally stored

data.

Example
To get the servo positioning error from module 1:

pos_error = ServoGetPError(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 72

ServoGetPos

Returns the current motor position

Function Prototype
long ServoGetPos(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current motor position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current motor position (stored locally) of a PIC-SERVO module. Use

NmcReadStatus() or NmcDefineStatus() to update the locally stored data.

Example
To get the current motor position from module 1:

pos = ServoGetPos(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 73

ServoGetStat (Internal Library Function)

Low-level routine to process and store returned PIC-SERVO status data

Function Prototype
BOOL ServoGetStat(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
ServoGetStat() is a low-level routine to process and store returned PIC-SERVO status data.

It first verifies the number of status bytes received and the check sum of the status bytes,

then stores the received status data internally.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 74

ServoGetStopCtrl

Returns the most recently issued stop command control byte

Function Prototype
byte ServoGetStopCtrl(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued stop command control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued stop command control byte for a PIC-SERVO module.

Example
To get the most recently issued stop command control byte for module 1:

stop_ctrl = ServoGetStopCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 75

ServoGetStopPos

Returns the most recently issued stop position

Function Prototype
long ServoGetStopPos(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the most recently issued stop position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued stop position (by a ‘stop here’ command) for a PIC-
SERVO module.

Example
To get the most recently issued stop position for module 1:

stop_pos = ServoGetStopPos(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 76

ServoGetVel

Returns the current motor velocity

Function Prototype
short int ServoGetVel(byte addr)*;

File Name
picservo.cpp

Include
picservo.h

Return Value
Returns the current motor velocity.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current motor velocity (stored locally) of a PIC-SERVO module. Use

NmcReadStatus() or NmcDefineStatus() to update the locally stored data.

Example
To get the current motor velocity from module 1:

vel = ServoGetVel(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 77

ServoHardReset (Only valid for PIC-SERVO SC – v.10 and greater)

Reset the controller to its power-up state and optionally store configuration data in
EEPROM

Function Prototype
BOOL ServoHardReset(byte addr, byte mode);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Reset mode control byte
---- Logical OR of the following reset control bits ----

SAVE_DATA - save config. data in EPROM
RESTORE_ADDR - restore address on power-up
EPU_AMP - enable amplifier on power-up
EPU_SERVO - enable servo on power up
EPU_STEP - enable step & direction mode on power up
EPU_LIMITS - enable limit switch protection on power up
EPU_3PH - enable 3-phase commutation on power up
EPU_ANTIPHASE - enable antiphase PWM on power up

Description
ServoHardReset() resets the PIC-SERVO SC to its power-up state, but it does not restore

any configuration data stored in EEPROM, except for the Antiphase or 3-Phase options.

Only an actual power-cycle or reset via the MCLR pin will cause the rest of the EEPROM

data to be restored. The ServoHardReset() command performs only the configuration

reset described below. For a simple reset (no data written to or erased from the

EEPROM), use the NmcHardReset() command.

Configuration Reset – In a configuration reset, data will be written to or erased from the

EEPROM. If the SAVE_DATA bit of the reset mode control byte is set, the reset mode

control byte itself will be saved in EEPROM, along with the individual and group

addresses, the current velocity and acceleration values, and all of the parameters set with

the Set Gain command. If the SAVE_DATA bit of the reset mode byte is cleared, a value of

0 will be stored in the EEPROM for the reset mode control byte, and all other EEPROM

data will be erased. Normally, a configuration reset will be sent to an individual

controller.

J E F F R E Y K E R R , L L C • www.jrkerr.com 78

On a hardware reset (power-up or reset via MCLR), the PIC-SERVO SC will read the reset

mode control byte and restore the saved data if the SAVE_DATA bit is set. It will also look

at bits 1 - 7 of the control byte to see what other operating options should be restored.

Note that if bit RESTORE_ADDR of the control byte is not set, the individual and group

addresses will not be restored, and the address of the module will have to be initialized by

NmcInit(). (Note: the servo and amplifier will not be enabled until the address is

initialized.) This is useful for when you want to save operating parameters, but are using

the PIC-SERVO SC with other NMC modules which do not have the EEPROM

configuration feature. If bit RESTORE_ADDR is set, the addresses will be restored and the

ADDR_OUT pin will be lowered immediately on powerup.

If you set the EPU_LIMITS bit of the reset mode control byte, the currently selected

option for limit switch protection will be saved in EEPROM and then restored on power-

up.

NOTE: In general the configuration data should not be saved in EEPROM, and the

modules should be completely configured by the host on start-up. This will reduce

problems associated with keeping track of the state of each module. Examples of systems

where configuration data should be saved in EEPROM are:

• If the module is running stand-alone in Step-and-Direction mode, then

configuration should be saved to EEPROM.

• If the amplifier uses 3-phase or Antiphase mode, then the EPU_3PH or

EPU_ANTIPHASE bits should be saved in EEPROM but no other bit should be

set.

Example
To save operating parameters for module 1 and have it power-up ready to receive Step &

Direction signals and in 3-Phase commutation output mode:
ServoHardReset(0x01, SAVE_DATA|RESTORE_ADDR|

 EPU_AMP|EPU_SERVO|

 EPU_STEP|EPU_3PH);

To erase the EEPROM configuration data for module address 1:
ServoHardReset(0x01, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 79

ServoInitPath

Initializes the starting point of a path to the current motor position

Function Prototype
void ServoInitPath(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
None

Arguments
addr – Module address

Module address (1 – 32)

Description
Initializes the starting point of a new path motion to the current motor command position.

This function should be called just prior to adding path points to new path mode motion

using ServoAddPathPoints(), and should not be called again until path point operation has

exited (either after the complete path point motion has been executed, or after the path

point motion is stopped with ServoStopMotor()).

When using PIC-SERVO CMC version 5, the advanced features bit of the

ServoStopMotor() command must first be enabled before using this function.

Example
To initialize the starting point of a path to the current motor position for module 1:

ServoInitPath(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 80

ServoLoadTraj

 Loads motion trajectory information

Function Prototype
BOOL ServoLoadTraj(byte addr, byte mode, long pos, long vel,

 long acc, byte pwm);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Trajectory mode
---- Logical OR of the following load trajectory mode bits ----

LOAD_POS – load position data
LOAD_VEL – load velocity data
LOAD_ACC – load acceleration data
LOAD_PWM – load PWM data
ENABLE_SERVO – enable PID servo
VEL_MODE – enable velocity profile
REVERSE – reverse (use to specify reverse PWM or Velocity)
MOVE_REL – move relative
START_NOW – start Now

pos – Position data
Position data if LOAD_POS bit of Trajectory Mode is set

(signed 32 bit integer: -2,147,483,648 to +2,147,483,647)

vel – Velocity data
Velocity data if LOAD_VEL bit of Trajectory Mode is set

(positive 32 bit integer: 0 to +83,886,080)

acc – Acceleration data
Acceleration data if LOAD_ACC bit of Trajectory Mode is set

(positive 32 bit integer: 0 - +2,147,483,647)

pwm – PWM data
PWM data if LOAD_PWM bit of Trajectory Mode is set

(positive 8 bit integer: 0 to +255)

Description
ServoLoadTraj() is used to send motion trajectory and PWM information to a PIC-SERVO

module. It is flexible in that it lets you send only the data needed for a particular motion.

For example, suppose you have already loaded acceleration and velocity parameters, and

J E F F R E Y K E R R , L L C • www.jrkerr.com 81

you only need to send commands with updated position data. In this case, you would set

the LOAD_POS bit of the Trajectory Mode control byte (along with other trajectory mode

bits as needed), and then only the position data bytes would be sent to the controller. If

any of the bits LOAD_POS, LOAD_VEL or LOAD_ACC are not set, then the corresponding

pos, vel or acc data will be ignored.

The position, velocity and acceleration parameters are programmed as 32 bit quantities in

units of encoder counts and servo ticks. The lower 16 bits of the velocity and acceleration

parameters represent a fractional component. Please refer to the PIC-SERVO SC Chip

Data Sheet section 4.4.7 Specifying Positions, Velocities and Accelerations for more

detail on how to specify these parameters.

The ENABLE_SERVO, VEL_MODE, and REVERSE Trajectory Mode control bits govern the

mode of operation. The ENABLE_SERVO bit should be set to enable the PID servo - this is

the normal mode of operation. If the ENABLE_SERVO bit is not set, you will default to

PWM mode operation and the PWM value provided will be used. (If no PWM value is

sent, the current output value will be used.)

The VEL_MODE bit is used to select velocity profile mode (VEL_MODE bit is set) or

trapezoidal profile mode (VEL_MODE bit is cleared).

Velocity, acceleration and PWM parameters should all be positive. If you need to specify

a reverse velocity or PWM value, you should set the REVERSE bit of the Trajectory Mode

control byte.

In trapezoidal position mode, however, the position data may be positive or negative, and

a reverse direction bit does not control the direction. In trapezoidal position mode, the

this bit is instead interpreted as a MOVE_REL bit for specifying relative motions. If this

bit is set, the position data will be interpreted as being relative rather than absolute.

Lastly, the START_NOW bit of the Trajectory Mode control byte is used to specify if you

want the command data to take effect immediately, or if you want to wait for a

NmcSyncOutput() command to be sent. For individual axis control, it is usually easiest to

set the START_NOW bit and eliminate the need for a separate NmcSyncOutput()

command. However, if you need to start several controllers moving at exactly the same

time, you can send them individual Load Trajectory commands without the START_NOW

bit set. This will cause the data to simply sit in a temporary buffer. You can then issue a

NmcSyncOutput() command to the group address containing several controllers, thereby

starting all motions at the same time.

You should note that if the START_NOW bit is not set, the motion parameters will be

ignored until a NmcSyncOutput() command is issued. If you send a new Load Trajectory

before sending a NmcSyncOutput() command, the temporary buffer will be over-written,

erasing your previous command data.

There are three status bits associated with velocity and trapezoidal profiling: MOVE_DONE

(in the status byte), SLEW and ACCEL (in the auxiliary status byte). See Section 4.1 for

descriptions of these status bits.

J E F F R E Y K E R R , L L C • www.jrkerr.com 82

Example
Move module 1 to an absolute position of -1500, velocity of 100,000, acceleration of 100

in trapezoidal profile mode, starting now:
ServoLoadTraj(1, LOAD_POS|LOAD_VEL|LOAD_ACC|

 ENABLE_SERVO|START_NOW,

 -1500, 100000, 100, 0);

Move module address 1 with a velocity of -100,000 in velocity profile mode starting now

(assume the acceleration parameter has already been loaded):

ServoLoadTraj(1, LOAD_VEL|ENABLE_SERVO|VEL_MODE,

 REVERSE|START_NOW,

 0, 100000, 0, 0);

Load velocity (100,000) and acceleration (100) data for subsequent motions, and leave the

PIC-SERVO in PWM mode with an PWM value of 0:

ServoLoadTraj(1, LOAD_VEL|LOAD_ACC|LOAD_PWM|START_NOW,

 0, 100000, 100, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 83

ServoNewMod (Internal Library Function)

Creates and initializes a new SERVOMOD structure

Function Prototype
SERVOMOD *ServoNewMod(void);

File Name
picservo.cpp

Include
picservo.h

Return Value
Pointer to the new SERVOMOD structure.

Arguments
None

Description
Creates, initializes, and returns a new SERVOMOD structure for storing PIC-SERVO data.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 84

ServoResetPos

Resets the position counter to zero

Function Prototype
BOOL ServoResetPos(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
ServoResetPos() resets the position counter to a value of zero. The current command

position used by the PID position servo will also be set to zero to prevent the motor from

jumping. This function should not be used while the motor is moving.

Example
To reset the position counter to zero for PIC-SERVO module 1:

ServoResetPos(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 85

ServoResetRelHome

Resets the position relative to the home position register

Function Prototype
BOOL ServoResetRelPos(byte addr);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
Resets the position for a PIC-SERVO (CMC or SC) module relative to the home position

register (i.e., the home position is now the zero position and all absolute motor positions

will be commanded and reported relative to the home position).

Example
To reset the position counter relative to the home position for PIC-SERVO module 1:

ServoResetRelHome(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 86

ServoSetGain

Sets the servo gains

Function Prototype
BOOL ServoSetGain(byte addr, short int kp, short int kd, short int ki, short int il,

byte ol, byte cl, short int el, byte sr, byte dc);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

kp - Position gain Kp
positive 16 bit integer: 0 - +32,767

kd - Derivative gain Kd
positive 16 bit integer: 0 - +32,767

ki - Integral gain Ki
positive 16 bit integer: 0 - +32,767

il - Integration limit IL
positive 16 bit integer: 0 - +32,767

ol - Output limit OL
unsigned 8 bit integer: 0 - 255

cl - Current limit CL
unsigned 8 bit integer: 0 - 255

odd values: CUR_SENSE proportional to motor current

even values: CUR_SENSE inversely proportional to motor current

el - Position error limit EL
positive 16 bit integer: 0 - +32,767

sr - Servo rate divisor SR
unsigned 8 bit integer: 1 - 255

dc - Amplifier deadband compensation DB
unsigned 8 bit integer: 0 - 255

Description
ServoSetGain() is used to set most of the non-motion profile related operating parameters

of the PIC-SERVO. The PID gain value, the integration limit, output limit, position error

limit, servo rate divisor and amplifier deadband are all described in detail in Section 4.3

of the PIC-SERVO SC Chip Data Sheet, and the step rate multiplier is described in

Section 4.4.6 Step and Direction Input Mode.

J E F F R E Y K E R R , L L C • www.jrkerr.com 87

The current limit value CL is used to set the allowable current level as described in

Section 4.7 of the PIC-SERVO SC Chip Data Sheet. The parameter itself has a different

meaning based on whether the value is odd or even (i.e., bit 0 is set or cleared). If the CL

value used is odd, the PIC-SERVO SC assumes that the voltage on the CUR_SENSE pin

increases proportionally as the current increases. If the analog reading at the CUR_SENSE

pin is greater than CL, an overcurrent condition will be triggered.

Some amplifiers, however, may produce a voltage signal inversely proportional to the

motor current, or may only have a digital signal which is lowered when some current

threshold is reached. (i.e., the voltage on CUR_SENSE goes down as the current goes up.)

Therefore, the PIC-SERVO SC will interpret an even values of CL such that if the analog

reading at the CUR_SENSE pin is less than CL, and overcurrent condition will be triggered.

Note that a CL value of 0 (the minimum even value) or a CL value of 255 (the maximum

odd value) will effectively disable the current limiting feature.

New applications should use ServoSetGain2() for all version of the PIC-SERVO.

Example
To set the gains of module address 1 to the following values:

Kp = 100, Kd = 1000, Ki = 50, IL = 200,

OL = 255, CL = 53 (directly proportional), EL = 4000

SR = 1, DB = 0

use the command string:

ServoSetGain(1, 100, 1000, 50, 200,

 255, 53, 4000, 1, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 88

ServoSetGain2

Set the servo gains (use this version for new applications)

Function Prototype
byte ServoSetGain(byte addr, short int kp, short int kd, short int ki, short int il,

byte ol, byte cl, short int el, byte sr, byte dc, byte sm);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

kp - Position gain Kp
positive 16 bit integer: 0 - +32,767

kd - Derivative gain Kd
positive 16 bit integer: 0 - +32,767

ki - Integral gain Ki
positive 16 bit integer: 0 - +32,767

il - Integration limit IL
positive 16 bit integer: 0 - +32,767

ol - Output limit OL
unsigned 8 bit integer: 0 - 255

cl - Current limit CL
unsigned 8 bit integer: 0 - 255

odd values: CUR_SENSE proportional to motor current

even values: CUR_SENSE inversely proportional to motor current

el - Position error limit EL
positive 16 bit integer: 0 - +32,767

sr - Servo rate divisor SR
unsigned 8 bit integer: 1 - 255

dc - Amplifier deadband compensation DB
unsigned 8 bit integer: 0 - 255

sm - Step rate multiplier SM
unsigned 8 bit integer: 1 – 255

Description
ServoSetGain() is used to set most of the non-motion profile related operating parameters

of the PIC-SERVO. The PID gain value, the integration limit, output limit, position error

limit, servo rate divisor and amplifier deadband are all described in detail in Section 4.3

of the PIC-SERVO SC Chip Data Sheet, and the step rate multiplier is described in

J E F F R E Y K E R R , L L C • www.jrkerr.com 89

Section 4.4.6 Step and Direction Input Mode.

The current limit value CL is used to set the allowable current level as described in

Section 4.7 of the PIC-SERVO SC Chip Data Sheet. The parameter itself has a different

meaning based on whether the value is odd or even (i.e., bit 0 is set or cleared). If the CL

value used is odd, the PIC-SERVO SC assumes that the voltage on the CUR_SENSE pin

increases proportionally as the current increases. If the analog reading at the CUR_SENSE

pin is greater than CL, an overcurrent condition will be triggered.

Some amplifiers, however, may produce a voltage signal inversely proportional to the

motor current, or may only have a digital signal which is lowered when some current

threshold is reached. (i.e., the voltage on CUR_SENSE goes down as the current goes up.)

Therefore, the PIC-SERVO SC will interpret an even values of CL such that if the analog

reading at the CUR_SENSE pin is less than CL, and overcurrent condition will be triggered.

Note that a CL value of 0 (the minimum even value) or a CL value of 255 (the maximum

odd value) will effectively disable the current limiting feature.

New applications should use this version of the Set Gain command (rather than

ServoSetGain()) for all versions of the PIC-SERVO.

Example
To set the gains of module address 1 to the following values:

Kp = 100, Kd = 1000, Ki = 50, IL = 200,

OL = 255, CL = 53 (directly proportional), EL = 4000

SR = 1, DB = 0, SM = 5

use the command string:

ServoSetGain(1, 100, 1000, 50, 200,

 255, 53, 4000, 1, 0, 5);

J E F F R E Y K E R R , L L C • www.jrkerr.com 90

ServoSetHoming

Sets homing mode parameters for capturing the home position

Function Prototype
BOOL ServoSetHoming(byte addr, byte mode);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Homing mode
---- Logical OR of the following load homing mode bits ----

ON_LIMIT1 - home on change in limit 1
ON_LIMIT2 - home on change in limit 2
HOME_MOTOR_OFF - turn motor off when homed
ON_INDEX - home on change in index
HOME_STOP_ABRUPT - stop abruptly when homed
HOME_STOP_SMOOTH - stop smoothly when homed
ON_POS_ERR - home on excessive position error
ON_CUR_ERR - home on overcurrent error

Description
Set Homing is used for specifying conditions for capturing the home position of a motor,

and also for specifying any desired automatic stopping mode for when the home position

is found.

Bits ON_LIMIT1, ON_LIMIT2, ON_INDEX, ON_POS_ERR, and ON_CUR_ERR specify the

conditions for capturing the home position. The home position will be captured when any

of the specified conditions occurs. Bits ON_LIMIT1, ON_LIMIT2, and ON_INDEX specify

that the homing function look for changes in the states of the limit and index input pins

from when the homing command is issued. It does not matter if the pin voltages start off

HI or LO.

Bits ON_POS_ERR, and ON_CURR_ERR allow you to also capture home on the

occurrence of a position error or on current limiting. Note that you should use the

ServoClearBits() command to clear the value of these status bits before issuing the

ServoSetHoming() command.

Bits HOME_MOTOR_OFF, HOME_STOP_ABRUPT, and HOME_STOP_SMOOTH are used to

J E F F R E Y K E R R , L L C • www.jrkerr.com 91

specify an automatic stopping mode for the motor once the home position has been

captured. Only one (or none) of these bits should be set.

When the ServoSetHoming() command is issued, the HOME_IN_PROG bit of the status

byte will be set. You should then issue a motion command to move towards one of the

triggers used for homing. The HOME_IN_PROG bit will then be cleared when any of the

selected homing conditions occur, and the current motor position is stored in the home

position register. The home position register can be read using the NmcReadStatus()

command.

Once the homing process is complete, you can re-issue the ServoSetHoming() command

if desired to capture a different home position. Sending a ServoSetHoming() command

with the control byte equal to zero will cancel any homing in progress and clear the

HOME_IN_PROG bit.

Note that ServoSetHoming() does not start any homing motion. After calling

ServoSetHoming(), you should use ServoLoadTraj() to start moving the motor towards a

limit or index switch.

Example
To have module 1 capture the home position on a change of LIMIT1 or LIMIT2 and then

stop abruptly:

ServoSetHoming(1,ON_LIMIT1|ON_LIMIT2|HOME_STOP_ABRUPT);

J E F F R E Y K E R R , L L C • www.jrkerr.com 92

ServoSetIoCtrl

Controls the configuration of the LIMIT1 and LIMIT2 I/O pins, as well as other
miscellaneous functions

Function Prototype
BOOL ServoSetIoCtrl(byte addr, byte mode);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – IO Control Mode
---- Logical OR of the following I/O control bits ----

SET_OUT1: 1 = set limit 1 output, 0 = clear limit 1 output
SET_OUT2: 1 = set limit 2 output, 0 = clear limit 1 output
IO1_IN: 1 = limit 1 is an input, 0 = limit 1 is an output
IO2_IN: 1 = limit 2 is an input, 0 = limit 1 is an output
LIMSTOP_OFF - turn off motor on limit
LIMSTOP_ABRUPT - stop abruptly on limit
THREE_PHASE: set for 3-phase mode
ANTIPHASE: set for antiphase mode
FAST_PATH: 0 = 30 or 60 Hz path execution, 1 = 60 or 120 Hz
STEP_MODE: 0 = normal operation, 1 = Step & Direction enabled

Description
CAUTION: Use extreme care in setting the parameters for this command –

incorrect settings could damage your amplifier or the PIC-SERVO chip.

There are significant differences in the operation of ServIoCtrl() between different

versions of the PIC-SERVO. Different versions of PIC-SERVO support different sets of

I/O control bits as shown below in Table 1.

In the PIC-SERVO SC, ServoIoCtrl() is used to set a number of operating options. The

ServoIoCtrl() command should be issued prior to enabling the amplifier to make sure that

the output options are set to be compatible with the amplifier type.

In earlier versions of the PIC-SERVO this command is primarily used to optionally

redefine the limit switch inputs as outputs.

J E F F R E Y K E R R , L L C • www.jrkerr.com 93

Table 1 - Allowed I/O Control Bits by PIC-SERVO Version

PIC-SERVO V.4
and earlier

PIC-SERVO V.5 PIC-SERVO SC

SET_OUT1 SET_OUT1 LIMSTOP_OFF

SET_OUT2 SET_OUT2 LIMSTOP_ABRUPT

IO1_IN IO1_IN THREE_PHASE

IO2_IN IO2_IN ANTIPHASE

. FAST_PATH FAST_PATH

. . STEP_MODE

Bits IO1_IN, IO2_IN, SET_OUT1 and SET_OUT2 are used in PIC-SERVO version 5 and

earlier to to set the I/O direction and output value of pins LIMIT1 and LIMIT2.

Bits LIMSTOP_OFF and LIMSTOP_ABRUPT are used to enable the limit switch protection

described in Section 4.7 of the PIC-SERVO SC Chip Data Sheet, automatically stopping

the motor abruptly or turning the motor off when a limit switch is hit. Only one of these

bits should be set. If Step and Direction mode is enabled, neither of these bit should be

set.

Bit THREE_PHASE is used to enable 3-Phase commutation mode and Bit ANTIPHASE is

used to enable Antiphase PWM mode. No more than one of these bits should be set. If

you want to use PWM & Direction mode (the default), neither bit should be set. See

Section 4.5.2 and Section 4.5.3 of the PIC-SERVO SC Chip Data Sheet for a description of

Antiphase PWM and 3-Phase commutation mode.

Bit FAST_PATH, used in PIC-SERVO V.5 and later, is used to set the fast path option for

path control mode described in Section 4.4.5 of the PIC-SERVO SC Chip Data Sheet.

Bit STEP_MODE is used to enable the Step & Direction input mode described in Section

4.4.6 of the PIC-SERVO SC Chip Data Sheet. If Step & Direction mode is selected, Bits

LIMSTOP_OFF and LIMSTOP_ABRUPT should both be clear.

Note that each time an I/O control command is issued, every one of the mode options will

be enabled or disabled according the corresponding bit of the control byte.

Example
For PIC-SERVO SC module 1, disable the limit switch protection, enable 3-phase

commutation, and enable Step & Direction input mode:

ServoIoCtrl(1, THREE_PHASE|STEP_MODE);

J E F F R E Y K E R R , L L C • www.jrkerr.com 94

ServoSetPos

Set the servo position to a specific value

Function Prototype
BOOL ServoSetPos(byte addr, long pos);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

pos – Position
32 bit position data used for setting position counter

(signed 32 bit integer: -2, 147, 483, 648 to +2, 147, 483, 647)

Description
Sets the position of a PIC-SERVO SC (v.10) module to a specified value.

Example
To set servo module 1 to position 100:

ServoSetPos(1, 100);

J E F F R E Y K E R R , L L C • www.jrkerr.com 95

ServoStartMove

Synchronously starts preloaded motions

Function Prototype
BOOL ServoStartMove(byte grouppaddr, byte groupleader);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
groupaddr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

groupleader – Group leader address

If groupaddr is individual use: leaderaddr = addr

If groupaddr is group use: leaderaddr = group leader address

(If no group leader use: leaderaddr = 0)

Description
The ServoStartMove() command is intended to be sent to a group of servos which have

been preloaded (using the ServoLoadTraj() command) with motion profile data. When

sent to the group address for these servos it will cause all servos to start their motions

simultaneously. Note that the data loaded into each servo with the ServoLoadTraj()

command merely sits unused in a buffer until a ServoStartMove() command is received.

If another ServoLoadTraj() command is received before the ServoStartMove() command,

it will overwrite all the previous trajectory data.

This command may be sent to either an individual servo or a group of servos by setting

the module address argument (groupaddr) to the appropriate individual or group address.

The group leader address argument (leaderaddr) should contain the individual address of

the group leader. If there is no group leader, leaderaddr should be set to 0. If this

command is sent to an individual address, then the group leader address argument should

be set to the individual address.

Note: A similar command, NmcSyncOutput(), is used to synchronously execute

commands using preloaded data for modules of different types.

Example
To synchronously start the preloaded motions on PIC-SERVO modules with group address

0x80 and group leader address 0x01:

ServoStartMove(0x80, 1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 96

ServoStartPathMode

Starts execution of the path loaded into the internal path point buffer

Function Prototype
BOOL ServoStartPathMode(byte groupaddr, byte groupleader);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
groupaddr – Module address

Module address (1 – 32) or group address (0x80 – 0xFF)

groupleader – Group leader address
If groupaddr is individual use: groupleader = groupaddr

If groupaddr is group use: groupleader = group leader addresses

(If no group leader use: groupleader = 0)

Description
ServoStartPathMode() starts the execution of a the path loaded into the PIC-SERVO’s

internal path point buffer. ‘groupaddr’ is the group address for all controllers to be started

and ‘leaderaddr’ is the individual address for the group’s leader (use leaderaddr = 0 if

there is no leader).

After the ServoStartPathPoints() command is sent and the path motion starts executing,

the PATH_MODE bit in the auxiliary status byte will be set. Usually you will want to send

this command to the entire group of controllers involved in a multi-axis motion to retain

coordination. As the path motion executes, the old path points will be removed from the

path point buffer.

The number of path points currently residing in the buffer can be read using the

NmcReadStatus() command. The buffer on the PIC-SERVO SC* can hold a maximum of

128 path points. Even after the path mode motion has started, you can use

ServoAddPathpoints() to dynamically add additional path points to the buffers as they

empty to create motions of any length.

When the path point buffer runs out, the motor will stop at the last specified path point.

The ServoStopMotor() command (any mode) can also be used to terminate a path mode

motion. When a path mode motion is terminated, the PATH_MODE bit in the auxiliary

*The PIC-SERVO CMC path point buffer can only hold 96 points. Therefore, you will want to limit the number of
points you add to 96 if using a mix of PIC-SERVO SC and PIC-SERVO CMC controllers.

J E F F R E Y K E R R , L L C • www.jrkerr.com 97

status byte will be cleared.

When using PIC-SERVO CMC version 5, the advanced features bit of the

ServoStopMotor() command must first be enabled before using this function.

Example
To start path motion for group address 0x81 with group leader address = 1:

ServoStartPathMode(0x81, 1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 98

ServoStopHere

Stop the motor at the specified position

Function Prototype
BOOL ServoStopHere(byte addr, byte mode, long pos);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Stop mode
Should be set to the value: (AMP_ENABLE | STOP_HERE)

pos – Stop position
Unprofiled command position (signed 32 bit integer)

Description
The ServoStopHere() command is a special version of the Stop Motor command and is

used to stop the motor at a specified position. If the STOP_HERE bit is set, the PID

command position will be set to the position specified with the “pos” argument, and the

motor will move abruptly at that position and stop. There is no profiling to smooth the

motion. If using this mode, the distance between the specified goal position and the

current motor position should be less than the position error limit specified with the

ServoSetGain() command, otherwise, a position error will be generated. This stopping

mode will cause the MOVE_DONE bit of the status byte to be set.

Example
Use the following command string to cause servo module 1 to stop at position 100:

ServoStopHere(1, AMP_ENABLE | STOP_HERE, 100);

J E F F R E Y K E R R , L L C • www.jrkerr.com 99

ServoStopMotor

Stop the motor in the manner specified by mode

Function Prototype
BOOL ServoStopMotor(byte addr, byte mode);

File Name
picservo.cpp

Include
picservo.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Stop mode
---- Logical OR of the following stop mode bits ----

ENABLE_AMP – enable amplifier
MOTOR_OFF – turn motor off
STOP_ABRUPT – stop motor abruptly
STOP_SMOOTH – stop motor smoothly
ADV_FEATURE - enable features in ver.5 CMC

Description
The Stop Motor command is used to both stop the motor in one of three ways, and also to

control whether the amplifier is enabled or not.

If bit ENABLE_AMP of the control byte is set, the amplifier enable output will be set if and

when the motor supply voltage is within the proper range. If in PWM & Direction or

Antiphase PWM modes, this will simply result in raising the ENABLE0 output. If in 3-

Phase commutation mode, this will enable the commutation logic to raise the proper

combination of ENABLE pins. If Bit ENABLE_AMP is cleared to 0, all ENABLE pins will be

lowered.

If bit MOTOR_OFF of the control byte is set, the motor will be turned off by disabling the

PID servo and setting the PWM output to 0. This stopping mode will cause the

MOVE_DONE bit and the POS_ERROR bit of the status byte to be set. The ENABLE_AMP

bit may be set or cleared with this stopping mode.

If bit STOP_ABRUPT of the control byte is set, the motor will immediately attempt to

servo to its current position, causing the motor to stop abruptly. If this mode is selected,

the amplifier enable bit should be set as well. This stopping mode will cause the

MOVE_DONE bit of the status byte will be set.

If bit STOP_SMOOTH is set, the motor will decelerate to a stop smoothly at the current

J E F F R E Y K E R R , L L C • www.jrkerr.com 100

programmed acceleration value. If this mode is selected, the amplifier enable bit should

be set as well. This stopping mode will cause the MOVE_DONE bit of the status byte to be

cleared while decelerating and then set again once the motor has stopped.

If bit ADV_FEATURE is set, it enables the advanced features on the PIC-SERVO CMC

(version 5) -- this bit applies only to the PIC-SERVO version 5. Once the advanced

features are enabled, they remain enabled until the PIC-SERVO chip is reset..

Only one of the stopping mode bits STOP_MOTOR, STOP_ABRUPT, and

STOP_SMOOTH should be selected. If none of these bit are set, the amplifier will be

enabled or disabled as specified, but no other action will be taken.

Example
For module 1, use the following command string to turn off the motor and disable the

amplifier:
ServoStopMotor(1, MOTOR_OFF);

For module address 1, use the following command string to smoothly decelerate to a stop:

ServoStopMotor (1, ENABLE_AMP|STOP_SMOOTH);

J E F F R E Y K E R R , L L C • www.jrkerr.com 101

SimpleMsgBox

Display a simple message box

Function Prototype
int SimpleMsgBox(char *msgstr);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
Returns 0 if fails, and non-zero on success. See the Windows OS MessageBox() function

description for success return values.

Arguments
msgstr – Message string

Pointer to a null-terminated string that contains the message to be displayed.

Description
Displays a simple windows message box.

Example
To display the message “Hello World”:

SimpleMsgBox(“Hello World”);

J E F F R E Y K E R R , L L C • www.jrkerr.com 102

SioChangeBaud (Internal Library Function)

Changes the baud rate of a COM port

Function Prototype
BOOL SioChangeBaud(HANDLE ComPort, unsigned int baudrate);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
0 = Fail

1 = Success

Arguments
ComPort – COM port handle
baudrate – Baud rate

9600, 19200, 38400, 57600, 115200, or 230400

Description
Changes the baud rate of the specified COM port.

NOTE: For normal operation, users do not need this command.

Example
To change the baud rate of: port 'ComPort' to 115200 baud:

HANDLE ComPort;

SioChangeBaud(ComPort, 115200);

J E F F R E Y K E R R , L L C • www.jrkerr.com 103

SioClose (Internal Library Function)

Closes a COM port

Function Prototype
BOOL SioClose(HANDLE ComPort);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
0 = Fail

1 = Success

Arguments
ComPort – COM port handle

Description
Closes a COM port.

NOTE: For normal operation, users do not need this command.

Example
To close the COM port specified by 'ComPort':

HANDLE ComPort;

SioClose(ComPort);

J E F F R E Y K E R R , L L C • www.jrkerr.com 104

SioClrInbuf (Internal Library Function)

Clears all the characters in a COM port's input buffer

Function Prototype
BOOL SioClrIbuf(HANDLE ComPort);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
0 = Fail

1 = Success

Arguments
ComPort – COM port handle

Description
Clears all the characters in a COM port's input buffer.

NOTE: For normal operation, users do not need this command.

Example
To clear all the characters in the COM port specified by 'ComPort':

HANDLE ComPort;

SioClrInbuf(ComPort);

J E F F R E Y K E R R , L L C • www.jrkerr.com 105

SioGetChars (Internal Library Function)

Read characters from a COM port

Function Prototype
DWORD SioGetChars(HANDLE ComPort, char *stuff, int n);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
Returns the number of characters actually read.

Arguments
ComPort – COM port handle
stuff – Character array

Store characters read – must be large enough to hold up to 'n' characters.

n – Number of characters to read

Description
SioGetChars() reads in 'n' characters from the specified COM port and puts them in the

array pointed to by 'stuff'. This function has a timeout value of approximately 100

millisec. It returns the number of characters actually read.

NOTE: For normal operation, users do not need this command.

Example
To read 4 characters from the COM port specified by 'ComPort' into the array 'buffer':

char buffer[100];

HANDLE ComPort;

SioGetChars(ComPort, buffer, 4);

J E F F R E Y K E R R , L L C • www.jrkerr.com 106

SioOpen (Internal Library Function)

Opens a COM port at the specified baud rate.

Function Prototype
HANDLE SioOpen(char *name, unsigned int baudrate);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
Returns a handle for the COM port stream.

Arguments
portname – Port name

Name of COM port (“COMn:”, where n = 1 – 8)

baudrate – Baud rate
9600, 19200, 38400, 57600, 115200, or 230400

Description
Opens a COM port at the specified baud rate.

NOTE: For normal operation, users do not need this command.

Example
To open COM port 1 at 115200 baud:

SioOpen(COM1, 115200);

J E F F R E Y K E R R , L L C • www.jrkerr.com 107

SioPutChars

Puts characters out a COM port

Function Prototype
BOOL SioPutChars(HANDLE ComPort, char *stuff, int n);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
0 = Fail

1 = Success

Arguments
ComPort – COM port handle

Handle of COM port used to send characters.

stuff – Character data
Array containing character data to send

n – Send number
Number of characters to send

Description
Shoves n characters out the COM port specified by handle ComPort.

Example
To send 12 characters from array 'buffer' out the COM port with handle 'ComPort':

HANDLE ComPort;

char buffer[100];

SioPutChars(ComPort, buffer, 12);

J E F F R E Y K E R R , L L C • www.jrkerr.com 108

SioTest

Returns the number of characters in a COM port's input buffer

Function Prototype
DWORD SioTest(HANDLE ComPort);

File Name
sio_util.cpp

Include
sio_util.h

Return Value
Returns the number of characters in the ComPort's input buffer.

Arguments
ComPort – COM port handle

Handle of COM port to be tested.

Description
Returns the number of characters in the ComPort's input buffer.

Example
To return the number of characters in the COM port with handle 'ComPort':

HANDLE ComPort;

SioTest(ComPort);

J E F F R E Y K E R R , L L C • www.jrkerr.com 109

StepGetAD

Returns the current A/D value

Function Prototype
byte StepGetAD(byte addr)*;

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the current A/D value.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current A/D value (stored locally) for a PIC-STEP module.

Example
To get the current A/D value of module 1:

ad_val = StepGetAD(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 110

StepGetCmdAcc

Returns the most recently issued command acceleration

Function Prototype
byte StepGetCmdAcc(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the most recently issued command acceleration.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command acceleration time for a PIC-STEP module.

Example
To get the most recently issued command acceleration time for module 1:

cmd_accel = StepGetCmdAcc(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 111

StepGetCmdPos

Returns the most recently issued command position

Function Prototype
long StepGetCmdPos(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the most recently issued command position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command position for a PIC-STEP module.

Example
To get the most recently issued command position for module 1:

cmd_pos = StepGetCmdPos(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 112

StepGetCmdSpeed

Returns the most recently issued command speed

Function Prototype
byte StepGetCmdSpeed(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the most recently issued command speed.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command speed for a PIC-STEP module.

Example
To get the most recently issued command speed for module 1:

cmd_speed = StepGetCmdSpeed(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 113

StepGetCmdST

Returns the most recently issued command timer count

Function Prototype
unsigned short int StepGetCmdST(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the most recently issued command timer count.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command timer count for a PIC-STEP module.

Example
To get the most recently issued command timer count for module 1:

cmd_st = StepGetCmdST(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 114

StepGetCtrlMode

Returns the control mode byte (set with StepSetParam)

Function Prototype
byte StepGetCtrlMode(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the control mode byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the control mode byte (set with StepSetParam) for a PIC-STEP module.

Example
To get the control mode byte for module 1:

ctrl_mode = StepGetCtrlMode(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 115

StepGetHome

Returns the current motor home position

Function Prototype
long StepGetHome(byte addr)*;

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the current motor home position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current motor home position (stored locally) of a PIC-STEP module.

Example
To get the current motor home position of module 1:

home_pos = StepGetHome(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 116

StepGetHomeCtrl

Returns the homing control byte

Function Prototype
byte StepGetHomeCtrl(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the homing control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the homing control byte for a PIC-STEP module.

Example
To get the homing control byte of module 1:

home_ctrl = StepGetHomeCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 117

StepGetHoldCurrent

Returns the holding current (set with StepSetParam)

Function Prototype
byte StepGetHoldCurrent(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the holding current.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the holding current (set with StepSetParam) for a PIC-STEP module.

Example
To get the holding current for module 1:

hold_cur = StepGetHoldCurrent(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 118

StepGetInbyte

Returns the current input byte

Function Prototype
byte StepGetInbyte(byte addr)*;

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the current input byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current input byte (stored locally) of a PIC-STEP module. This includes the

E-stop, limit switch, homing switch and auxiliary input bits.

Example
To get the current input byte of module 1:

inbyte = StepGetInbyte(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 119

StepGetMinSpeed

Returns the minimum stepping speed

Function Prototype
byte StepGetMinSpeed(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the minimum stepping speed.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the minimum stepping speed for a PIC-STEP module.

Example
To get the minimum stepping speed of module 1:

min_speed = StepGetMinSpeed(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 120

StepGetOutputs

Returns the most recently issued command output byte

Function Prototype
byte StepGetOutputs(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the most recently issued command output byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the most recently issued command output byte for a PIC-STEP module.

Example
To get the most recently issued command output byte of module 1:

outputs = StepGetOutputs(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 121

StepGetPos

Returns the current motor position

Function Prototype
long StepGetPos(byte addr)*;

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the current motor position.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current motor position (stored locally) of a PIC-STEP module.

Example
To get the current motor position of module 1:

pos = StepGetPos(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 122

StepGetRunCurrent

Returns the running current (set with StepSetParam)

Function Prototype
byte StepGetRunCurrent(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the running current.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the running current (set with StepSetParam) of a PIC-STEP module.

Example
To get the running current of module 1:

run_cur = StepGetRunCurrent(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 123

StepGetStat (Internal Library Function)

Low-level routine to process and store returned PIC-STEP status data

Function Prototype
BOOL StepGetStat(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
StepGetStat() processes and stores the status data returned for a PIC-STEP module. It

takes the status data stored in the global array “inbuf”, verifies the number of bytes

received and checksums, then stores the status fields in the NMCMOD structure mod

[addr].

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 124

StepGetStepTime

Returns the current timer count

Function Prototype
unsigned short int StepGetStepTime(byte addr)*;

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the current timer count.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the current timer count (stored locally) for a PIC-STEP module.

Example
To get the current timer count of module 1:

step_time = StepGetStepTime(1);

*This function only retrieves data stored locally on the PC. To insure the data is current, NmcReadStatus should be
called just prior to calling this function. Alternately, if NmcDefineStatus has been used to permanently include the

relevant data item in the status packet, any command sent to a module will update the locally stored data.

J E F F R E Y K E R R , L L C • www.jrkerr.com 125

StepGetStopCtrl

Returns the stopping control byte

Function Prototype
byte StepGetStopControl(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the stopping control byte.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the stopping control byte for a PIC-STEP module.

Example
To get the stopping control byte of module 1:

stop_ctrl = StepGetStopCtrl(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 126

StepGetThermLimit

Returns the thermal limit (set with StepSetParam)

Function Prototype
byte StepGetThermLimit(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
 Returns the thermal limit.

Arguments
addr – Module address

Module address (1 – 32)

Description
Returns the thermal limit (set with StepSetParam) for a PIC-STEP module.

Example
To get the thermal limit of module 1:

therm_lim = StepGetThermLimit(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 127

StepLoadTraj

Loads motion trajectory information

Function Prototype
BOOL StepLoadTraj(byte addr, byte mode, long pos, byte speed,

byte acc, float raw_speed);

File Name
picstep.cpp

Include
picsstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode - Trajectory mode
---- Logical OR of the following load trajectory mode bits ----

LOAD_POS – load position data
LOAD_SPEED – load velocity data
LOAD_ACC – load acceleration data
LOAD_ST – load initial time count
STEP_REV – use reverse direction
START_NOW – start now

pos – Position data (4 bytes)
Position data if LOAD_POS bit of Trajectory Mode is set

(signed 32 bit integer: -2,147,483,648 to +2,147,483,647)

speed – Speed data (1 byte)
Speed data if LOAD_SPEED bit of Trajectory Mode is set

(8 bit integer 1 to 250)

acc – Acceleration data (1 byte)
Acceleration data if LOAD_ACC bit of Trajectory Mode is set

(8 bit integer: 1 – 255; larger values = slower accel)

raw_speed – Raw speed
Speed data if LOAD_ST bit of Trajectory Mode is set
(float: 0.4 – 250.0)

Description
All motion parameters are set with this command. Setting one of the LOAD_POS,

LOAD_VEL, LOAD_ACC, or LOAD_ST bits in the mode will cause the corresponding data

(pos, speed, acc, or raw_speed respectively) to be sent to the PIC-STEP. The selection of

which data is loaded will also determine which operating mode (trap. profile, profiled

velocity, unprofiled velocity) will be used. In addition, there are restrictions on which

modes can be entered from any given current mode. Table 2 below details which goal

J E F F R E Y K E R R , L L C • www.jrkerr.com 128

modes can be entered from any starting mode, and which data needs to be loaded in order

to enter a specific goal mode.

The position data is used as the goal position in trapezoidal profile mode and in the

unprofiled position mode. The speed data is used as the goal speed in velocity profile

mode or as the maximum speed in trapezoidal profile mode. (If the goal speed is less than

the minimum profile speed, the minimum profile speed will be used instead.) The

acceleration data is used in both trapezoidal and velocity profile mode. The initial timer

count data is used in unprofiled velocity and unprofiled position mode. It is also used as

the starting point for ramping if you choose to enter velocity mode and decelerate or

accelerate to a new velocity.

Position values can be either positive or negative and represent an absolute motor

position, but the speed and acceleration should always be positive. Please see the PIC-

STEP chip data sheet for details on specifying values for the position, speed and

acceleration.

Bit STEP_REVERSE is used with the velocity profile mode or unprofiled velocity mode to

set the direction of motion. Note that if the motor is moving, the direction of motion

cannot be changed without first stopping the motor using the StepStopMotor() command.

If bit START_NOW is set, the motion will be executed immediately. If it is not set, the

command will have no effect whatsoever (and may be overwritten by another

StepLoadTraj() command) until a NmcSyncOutput() command is called with the

module's address or group address.

Example
Move module 1 to an absolute position of -1500 steps, speed of 100 (2500 steps per

sec.), acceleration of 40, in trapezoidal profile mode, starting now (assume PIC-STEP is

in 1x speed mode):
StepLoadTraj(1, LOAD_POS|LOAD_SPEED|LOAD_ACC|START_NOW,

 -1500, 100, 40);

Move module address 1 with a velocity of -100 in velocity profile mode starting now

(assume the acceleration parameter has already been loaded, and PIC-STEP is in 1x speed

mode):

StepLoadTraj(1, LOAD_SPEED|REVERSE|START_NOW,

0, 100, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 129

Table 2 - PIC-STEP Operating Mode Transition Table

Starting Mode

Goal Mode Stopped Trap. Profile Vel. Profile Unprofiled

Velocity,

With Stop

Unprofiled

Velocity,

No Stop

Stopped ---
Use Stop

Command

Use Stop

Command

Use Stop

Command

Use Stop

Command

Trap. Profile

 a Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

Not Allowed Not Allowed Not Allowed Not Allowed

Vel. Profile

 r Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

 r Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

 r Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

 r Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

 r Position

 nnnnnnnnn Velocity

 nnnnnnnnn Acceleration

 r Tmr. Count

Unprofiled

Velocity,

With Stop

 a Position

 r Velocity

 r Acceleration

 a Tmr. Count

 r Position

 r Velocity

 r Acceleration

 a Tmr. Count

Not Allowed

 r Position

 r Velocity

 r Acceleration

 a Tmr. Count

Not Allowed

Unprofiled

Velocity,

No Stop

 r Position

 r Velocity

 r Acceleration

 a Tmr. Count

Not Allowed

 r Position

 r Velocity

 r Acceleration

 a Tmr. Count

Not Allowed

 r Position

 r Velocity

 r Acceleration

 a Tmr. Count

 a Load this parameter

 r Do not load this parameter

 n n n n n n n n n Optionally load this parameter

If a parameter is not loaded, the previously loaded value will be used.

J E F F R E Y K E R R , L L C • www.jrkerr.com 130

StepNewMod (Internal Library Function)

Creates and initializes a new STEPMOD structure

Function Prototype
STEPMOD *StepNewMod(void);

File Name
picstep.cpp

Include
picstep.h

Return Value
Pointer to the new STEPMOD structure.

Arguments
None

Description
Creates, initializes, and returns a new STEPMOD structure for storing PIC-STEP data.

NOTE: For normal operation, users do not need this command.

J E F F R E Y K E R R , L L C • www.jrkerr.com 131

StepResetPos

Resets position counter to zero

Function Prototype
BOOL StepResetPos(byte addr);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

Description
StepResetPos() resets the position counter to a value of zero. Do not issue this command

when the motor is in motion.

Example
To have module 1 reset the position counter to zero:

StepResetPos(1);

J E F F R E Y K E R R , L L C • www.jrkerr.com 132

StepSetHoming

Set homing mode parameters for capturing the home position

Function Prototype
BOOL StepSetHoming(byte addr, byte mode);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Homing mode
---- Logical OR of the following load homing mode bits ----

ON_LIMIT1 - home on change in limit 1
ON_LIMIT2 - home on change in limit 2
HOME_MOTOR_OFF - turn motor off when homed
ON_HOMESW - home on change in index
HOME_STOP_ABRUPT - stop abruptly when homed
HOME_STOP_SMOOTH - stop smoothly when homed

Description
StepSetHoming() causes the controller to monitor the specified conditions and capture the

home position when any of the flagged homing conditions occur. The HOME_IN_PROG

bit in the Status byte is set when this command is issued and it is lowered when the home

position has been found. Setting one (and only one) of bits HOME_MOTOR_OFF,

HOME_STOP_ABRUPT, or HOME_STOP_SMOOTH will cause the motor to stop

automatically in the specified manner once the home condition has been triggered.

Example
To have module 1 capture the home position on a change of LIMIT1 or LIMIT2 and then

stop abruptly:

StepSetHoming(1, ON_LIMIT1|ON_LIMIT2|HOME_STOP_ABRUPT);

J E F F R E Y K E R R , L L C • www.jrkerr.com 133

StepSetOutputs

Sets or clears the general purpose output pins

Function Prototype
BOOL StepSetOutputs(byte addr, byte outbyte);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

outbyte – Output values
Bits 0 thru 4 of outbyte correspond to output pins OUT1 – OUT5. Setting a bit in

outbyte will cause the corresponding pin to go HI, clearing a bit will cause the pin

to go LOW.

Description
StepSetOutput() sets or clears the general purpose output pins OUT1 – OUT5.

Example
To have module 1 set the OUT1 and OUT2 output pins HIGH, and the OUT3, OUT4, and

OUT5 output pins LOW:

StepSetOutputs(1, 0x03);

J E F F R E Y K E R R , L L C • www.jrkerr.com 134

StepSetParam

Set the PIC-STEP operating parameters

Function Prototype
BOOL StepSetParam(byte addr, byte mode, byte minspeed, byte runcur,

 byte holdcur, byte thermlim);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – (MAXMOD-1))

mode – Operating mode
---- Logical OR of the following set parameter mode bits ----

SPEED_8X - use speed units of 200 step pulses/sec.
SPEED_4X - use speed units of 100 step pulses/sec.
SPEED_2X - use speed units of 50 step pulses/sec.
SPEED_1X - use speed units of 25 step pulses/sec.
IGNORE_LIMITS - do not stop automatically on limit switches
IGNORE_ESTOP - do not stop automatically on e-stop
ESTOP_OFF – turn amplifier off on estop or limit switch

minspeed – minimum stepping speed (1 – 250)
runcur – running current limit (0 – 255)
holdcur – holding current limit (0 – 255)
thermlim – thermal limit (0 – 255)

Description

Sets control parameters governing the operation of the PIC-STEP. This command must be

issued before any motions can be executed. If this command is issued while the motor is

in motion, any changes to the speed mode bits and minimum profile speed will be

ignored. Please see the PIC-STEP chip data sheet for details on specifying these parameter

values.

Example
To set PIC-STEP module 1 to use 1x speed, minimum speed of 10, running current 100,

hold current 50, and thermal limit 0 (disables thermal shutdown feature):

StepSetParam(1, SPEED_1X, 10, 100, 50, 0);

J E F F R E Y K E R R , L L C • www.jrkerr.com 135

StepStopMotor

Stops a motor in the manner specified by mode

Function Prototype
BOOL StepStopMotor(byte addr, byte mode);

File Name
picstep.cpp

Include
picstep.h

Return Value
0 = Fail

1 = Success

Arguments
addr – Module address

Module address (1 – 32)

mode – Stop mode
---- Logical OR of the following stop motor control bits ----

ENABLE_AMP – enable amplifier
STOP_ABRUPT – stop motor abruptly
STOP_SMOOTH – stop motor smoothly

Description
Stops the motor in the specified manner. If bit ENABLE_AMP of the Stop Control Byte is

set, the PIC-STEP AMP_EN pin will be set; if bit ENABLE_AMP is cleared, the PIC-STEP

AMP_EN pin will be cleared, regardless of the state of the other bits. If bit

STOP_ABRUPT is set, the motor will stop abruptly at its current position. If bit

STOP_SMOOTH is set, the motor will decelerate to a stop using the current acceleration

time for the deceleration ramp. Only one of bits STOP_ABRUPT or STOP_SMOOTH should

be set at one time.

When you stop smoothly, you are effectively setting the goal speed to zero, and when the

minimum profile speed is reached, the motor will stop. Note that if, after stopping

smoothly, you want to enter the trapezoidal profile mode, you will have to load a new

goal velocity (along with the position) because StepStopMotor() command will have set

the goal velocity to zero.

Note that the StepStopMotor() command must be issued in order to initially enable the

amplifier. The amplifier can be enabled without setting any of the other stop control bits.

Example
To make PIC-STEP module 1 stop smoothly:

StepStopMotor(1, ENABLE_AMP|STOP_SMOOTH);

J E F F R E Y K E R R , L L C • www.jrkerr.com 136

4. Status Packet Description

NMCLIB04.DLL includes a set of functions for accessing various types of status data which has

been returned to the host in status packets. Note that these functions do not query the controller

modules for data; they simple return the values stored locally on the PC. NmcReadStatus() (or

and other command which causes a status packet to be sent) must be called first to ensure that the

data stored locally on the PC is current.

4.1 PIC-SERVO Status Packet

Status Packet Functions

Function Type Status Field Description

NmcGetStat(addr) byte Status byte. See status byte bit field definitions.

ServoGetPos(addr) long Motor position. Signed 32 bit integer.

ServoGetAD(addr) byte A/D value of voltage on CUR_SENSE pin. Range: 0 - 255

ServoGetVel(addr)
short int

Motor velocity in encoder counts per servo cycle. Signed 16 bit
integer.

ServoGetAux(addr) byte Auxiliary status byte. See auxiliary status byte bit field definitions.

ServoGetHome(addr) long Motor home position. Signed 32 bit integer.

NmcGetModType(addr) byte Module Type. 0=PIC-SERVO, 2=PIC-I/O, 3= PIC-STEP.

NmcGetModVer(addr) byte Module Version.

ServoGetPError(addr) short int Servo positioning Error. Signed 16 bit integer.

ServoGetNPoints(addr) byte Number of path points left in path buffer.

Status Byte Bit Fields

Bit Name Definition

0 MOVE_DONE Clear when in the middle of a trapezoidal profile move, or in velocity

mode, when accelerating from one velocity to the next. This bit is set
otherwise, including while the position servo is disabled.

1 CKSUM_ERROR Set if there was a checksum error in the most recently received command
packet.

2 OVERCURRENT Set if current limiting occurred. Must be cleared by user with

ServoClearBits() command.

3 POWER_ON Set if motor power is the voltage on the VOLT_SENSE pin is between 0.9v
and 4.5v. Clear otherwise.

4 POS_ERR Set if the position error exceeds the position error limit. It is also set

whenever the position servo is disabled. Must be cleared by user with
ServoClearBits() command.

5 LIMIT1 Value of limit switch 1 input.

6 LIMIT2 Value of limit switch 2 input.

7 HOME_IN_PROG Set while searching for a home position. Reset to zero once the home
position has been captured.

J E F F R E Y K E R R , L L C • www.jrkerr.com 137

Auxiliary Status Byte Bit Fields

Bit Name Definition

0 INDEX Encoder index input value.

1 POS_WRAP Set if the 32 bit position counter overflows or underflows. Must be

cleared with the ServoClearBits() command.

2 SERVO_ON Set if the position servo is enabled, clear otherwise.

3 ACCEL_DONE Set when the motor is accelerating, clear when decelerating.

This bit has no meaning when stopped or at a constant velocity.

4 SLEW_DONE Set when moving at a constant velocity or when stopped. Clear when

accelerating or decelerating.

5 SERVO_OVERRUN This bit is set only if the calculations required for one servo

cycle take longer than 0.51 milliseconds. This can happen if

Step inputs exceed the allowable step input rate. Cleared with

the ServoClearBits() command.

6 PATH_MODE This bit is set when a path mode motion is in progress. It is cleared when
the path point buffer is emptied or if a ServoStopMotor() command is
issued.

7 not used

J E F F R E Y K E R R , L L C • www.jrkerr.com 138

4.2 PIC-STEP Status Packet

Status Packet Functions

Function Type Status Field Description

NmcGetStat(addr) byte Status byte. See status byte bit field definitions.

StepGetPos(addr) long Motor position. Signed 32 bit integer.

StepGetAD(addr) byte A/D value of voltage on CUR_SENSE pin. Range: 0 – 255.

StepGetStepTime(addr) unsigned

short int

Current initial timer count.

StepGetInbyte(addr) byte Inputs byte. See inputs byte bit field definitions.

StepGetHome(addr) long Motor home position. Signed 32 bit integer.

NmcGetModType(addr) byte Module Type. 0=PIC-SERVO, 2=PIC-I/O, 3= PIC-STEP.

NmcGetModVer(addr) byte Module Version.

Status Byte Bit Fields

Bit Name Definition

0 MOTOR_MOVING Set when motor is moving.

1 CKSUM_ERROR Set if there was a checksum error in the most recently received command
packet.

2 AMP_ENABLED Set when amplifier enable output signal is HIGH (amplifier is enabled).

3 POWER_ON Set when the power sense input signal is HIGH (motor power is on).

4 AT_SPEED Set when at the commanded speed .

5 VEL_MODE Set when in velocity profile mode.

6 TRAP_MODE Set when in trapezoidal profile mode.

7 HOME_IN_PROG Set while homing in progress, cleared when home found .

Inputs Byte Bit Fields

Bit Name Definition

0 ESTOP Value of the emergency stop input.

1 AUX_IN1 Value of IN1 general purpose input.

2 AUX_IN2 Value of IN2 general purpose input.

3 FWD_LIMIT Value of limit switch 1 input.

4 REV_LIMIT Value of limit switch 2 input.

5 HOME_SWITCH Value of home switch input.

6 not used

7 not used

J E F F R E Y K E R R , L L C • www.jrkerr.com 139

4.3 PIC-I/O Status Packet

Status Packet Functions

Function Type Status Field Description

NmcGetStat(addr) byte Status byte. See status byte bit field definitions.

IoInBitVal(addr, bitnum) BOOL Value of specified input bit (bitnum = 0-11).

IoGetADCVal(addr,

channel)
byte

Value of specified A/D channel input. (channel = 0, 1, 2).

IoGetTimerVal(addr) unsigned

long

Counter/timer value.

NmcGetModType(addr) byte Module Type. 0=PIC-SERVO, 2=PIC-I/O, 3= PIC-STEP.

NmcGetModVer(addr) byte Module Version.

IoInBitSVal(addr,

bitnum)
BOOL

Value of specified input bit captured with NmcSychInput()

command (bitnum = 0-11).

IoGetTimerSVal unsigned
long

Value of counter/timer captured with NmcSyncInput() command.

Status Byte Bit Fields

Bit Name Definition

0 not used

1 CKSUM_ERROR Set if there was a checksum error in the most recently received command

packet.

2 not used

3 not used

4 not used

5 not used

6 not used

7 not used

J E F F R E Y K E R R , L L C • www.jrkerr.com 140

